A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites
Abstract
:1. Introduction
2. Structure and Synthesis of MXenes
2.1. Structure Characteristics
2.2. Controllable Synthesis
3. Anode Materials Based on MXenes and Their Composites
3.1. Anode Materials Based on Pure MXenes
3.2. Anode Materials Based on Nonmetal Material/MXenes Composites
3.3. Anode Materials Based on Metal Oxide/MXene Composites
3.4. Anode Materials Based on Metal Sulfide/MXene Composites
3.5. Anode Materials Based on Other MXene Composites
4. Current Issues and Challenges
5. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, P.; Fang, D.; Liu, Y.; Shang, Y.; Shi, Y.; Yang, H.Y. MXene-Based Materials for Electrochemical Sodium-Ion Storage. Adv. Sci. 2021, 8, e2003185. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Seo, K.M.; Kim, S.H.; Ansari, S.A. Critical Aspects of Various Techniques for Synthesizing Metal Oxides and Fabricating Their Composite-Based Supercapacitor Electrodes: A Review. Nanomaterials 2022, 12, 1873. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Li, C.; Kou, X.; Li, B.; Yu, D.Y.W. P2-Na2/3Ni2/3Te1/3O2 Cathode for Na-ion Batteries with High Voltage and Excellent Stability. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Liu, D.; Lu, S.; Xue, Y.; Guan, Z.; Fang, J.; Zhu, W.; Zhuang, Z. One-pot synthesis of IrNi@Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte. Nano Energy 2019, 59, 26–32. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 2019, 12, 887–922. [Google Scholar] [CrossRef]
- Liu, B.; Chen, J.; Yang, B.; Liu, L.; Sun, Y.; Hou, R.; Lin, Z.; Yan, X. Boosting the performance of lithium metal capacitors with a Li composite anode. J. Mater. Chem. A 2021, 9, 10722–10730. [Google Scholar] [CrossRef]
- Zhao, D.; Qin, J.; Zheng, L.; Cao, M. Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode. Chem. Mater. 2016, 28, 4180–4190. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Kuntz, P.; Raccurt, O.; Azaïs, P.; Richter, K.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Bardet, M.; Buzlukov, A.; Genies, S. Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging. Batteries 2021, 7, 48. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Hao, J.; Wallace, G.G.; Beirne, S.; Chen, J. 3D-Printed Wearable Electrochemical Energy Devices. Adv. Funct. Mater. 2021, 32, 2103092. [Google Scholar] [CrossRef]
- He, X.-X.; Zhao, J.-H.; Lai, W.-H.; Yang, Z.; Gao, Y.; Zhang, H.; Qiao, Y.; Li, L.; Chou, S.-L. Challenges and Applications of Flexible Sodium Ion Batteries. Mater. Lab 2022, 1, 210001-1. [Google Scholar]
- Wu, X.; Ru, Y.; Bai, Y.; Zhang, G.; Shi, Y.; Pang, H. PBA composites and their derivatives in energy and environmental applications. Coordin. Chem. Rev. 2022, 451, 214260. [Google Scholar] [CrossRef]
- Wang, N.; Chu, C.; Xu, X.; Du, Y.; Yang, J.; Bai, Z.; Dou, S. Comprehensive New Insights and Perspectives into Ti-Based Anodes for Next-Generation Alkaline Metal (Na+, K+) Ion Batteries. Adv. Energy Mater. 2018, 8, 1801888. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Chen, L.; Chen, C.; Liu, Y.; Fan, L. Recent progress in key materials for room-temperature sodium-ion battery. J. Electrochem. 2019, 25, 55–76. [Google Scholar]
- Chen, J.; Zhong, X.; He, C.; Wang, X.; Xu, Q.; Li, J. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries. J. Electrochem. 2020, 26, 328–337. [Google Scholar]
- Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. Chem. Rec. 2018, 18, 459–479. [Google Scholar] [CrossRef]
- Mu, L.-Q.; Hu, Y.-S.; Chen, L.-Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2015, 24, 038202. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A General Metal-Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Wei, X.; Li, Y.; Peng, H.; Zhou, M.; Ou, Y.; Yang, Y.; Zhang, Y.; Xiao, P. Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 2018, 341, 618–627. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Y.; Chen, L.; Hu, Y.-S. Ni-based cathode materials for Na-ion batteries. Nano Res. 2019, 12, 2018–2030. [Google Scholar] [CrossRef]
- Mohsin, I.U.; Ziebert, C.; Rohde, M.; Seifert, H.J. Thermophysical Characterization of a Layered P2 Type Structure Na0.53MnO2 Cathode Material for Sodium Ion Batteries. Batteries 2021, 7, 16. [Google Scholar] [CrossRef]
- Nisa, S.S.; Rahmawati, M.; Yudha, C.S.; Nilasary, H.; Nursukatmo, H.; Oktaviano, H.S.; Muzayanha, S.U.; Purwanto, A. A Fast Approach to Obtain Layered Transition-Metal Cathode Material for Rechargeable Batteries. Batteries 2022, 8, 4. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Hou, Y. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164–182. [Google Scholar] [CrossRef]
- Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada, A. Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano 2016, 10, 3334–3341. [Google Scholar] [CrossRef]
- Aslam, M.K.; Xu, M. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale 2020, 12, 15993–16007. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Li, M.; Mullaliu, A.; Passerini, S.; Giorgetti, M. Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study. Batteries 2021, 7, 5. [Google Scholar] [CrossRef]
- Mateen, A.; Ansari, M.Z.; Abbas, Q.; Muneeb, A.; Hussain, A.; Eldin, E.T.; Alzahrani, F.M.; Alsaiari, N.S.; Ali, S.; Javed, M.S. In Situ Nitrogen Functionalization of 2D-Ti3C2Tx-MXenes for High-Performance Zn-Ion Supercapacitor. Molecules 2022, 27, 7446. [Google Scholar] [CrossRef]
- Cao, Z.-J.; Zhang, Y.-Z.; Cui, Y.-L.-S.; Li, B.; Yang, S.-B. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten 2020, 2, 162–175. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, M.; Guo, D.; Wen, C.; Li, X.; Huang, X.; Li, H.; Sun, G. Theoretical Design and Structural Modulation of a Surface-Functionalized Ti3C2Tx MXene-Based Heterojunction Electrocatalyst for a Li-Oxygen Battery. ACS Nano 2022, 16, 4487–4499. [Google Scholar] [CrossRef]
- Aslam, M.K.; AlGarni, T.S.; Javed, M.S.; Shah, S.S.A.; Hussain, S.; Xu, M. 2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. J. Energy Storage 2021, 37, 102478. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, F.; Zhang, L.; Liu, L.; Chen, J.; Yang, B.; Yan, X. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. J. Energy Chem. 2020, 46, 256–263. [Google Scholar] [CrossRef]
- Wen, C.; Zheng, X.; Li, X.; Yuan, M.; Li, H.; Sun, G. Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries. Chem. Eng. J. 2021, 409, 128102. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Sahoo, S.; Ahmad, M.; Chen, X.; Javed, M.S.; Qin, N.; Gu, S.; Li, Y.; Nawaz, T.; et al. Factors affecting the growth formation of nanostructures and their impact on electrode materials: A systematic review. Mater. Today Phys. 2022, 27, 100844. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Sufyan Javed, M.; Ahmad, M.; Chen, X.; Sahoo, S.; Ma, X.; Bajaber, M.A.; Zahid Ansari, M.; Zhang, K. Earth- and marine-life-resembling nanostructures for electrochemical energy storage. Chem. Eng. J. 2023, 454, 140313. [Google Scholar] [CrossRef]
- Xie, X.; Kretschmer, K.; Anasori, B.; Sun, B.; Wang, G.; Gogotsi, Y. Porous Ti3C2Tx MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life. ACS Appl. Nano Mater. 2018, 1, 505–511. [Google Scholar] [CrossRef]
- Li, H.; Liu, A.; Ren, X.; Yang, Y.; Gao, L.; Fan, M.; Ma, T. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study. Nanoscale 2019, 11, 19862–19869. [Google Scholar] [CrossRef]
- Tahir, M.; Khan, A.A.; Tasleem, S.; Mansoor, R.; Sherryna, A.; Tahir, B. Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: A critical review. J. Energy Chem. 2023, 76, 295–331. [Google Scholar] [CrossRef]
- Salim, O.; Mahmoud, K.A.; Pant, K.K.; Joshi, R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019, 14, 100191. [Google Scholar] [CrossRef]
- Hong, L.-F.; Guo, R.-T.; Yuan, Y.; Ji, X.-Y.; Li, Z.-S.; Lin, Z.-D.; Pan, W.-G. Recent progress of two-dimensional MXenes in photocatalytic applications: A review. Mater. Today Energy 2020, 18, 100521. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable Synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241. [Google Scholar] [CrossRef]
- Ibragimova, R.; Puska, M.J.; Komsa, H.P. pH-Dependent Distribution of Functional Groups on Titanium-Based MXenes. ACS Nano 2019, 13, 9171–9181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef] [Green Version]
- Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W.J.; Ramakrishnan, S.; Vaia, R.A. Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication. ACS Nano 2021, 15, 2771–2777. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, P.; Liu, Z.; Park, S.; Lohe, M.R.; Wu, Y.; Shaygan Nia, A.; Yang, S.; Feng, X. Ambient-Stable Two-Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angew. Chem. Int. Ed. 2021, 60, 8689–8693. [Google Scholar] [CrossRef]
- Sun, Z.; Yuan, M.; Lin, L.; Yang, H.; Nan, C.; Li, H.; Sun, G.; Yang, X. Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene. ACS Mater. Lett. 2019, 1, 628–632. [Google Scholar] [CrossRef]
- Han, Q.; Zhou, Y.; Du, R.; Xiao, B.; Cheng, J.; Zhang, M.; Dong, C.; Sun, X.; Jiang, F.; Yang, J. Ti3C2Tx with a hydroxyl-rich surface for metal sulfides as high performance electrode materials for sodium/lithium storage. J. Mater. Chem. A 2021, 9, 14013–14024. [Google Scholar] [CrossRef]
- Wyatt, B.C.; Nemani, S.K.; Anasori, B. 2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Con. 2021, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Jing, W.; Li, Y.; Wang, M.; Hu, S.; Wang, H.; He, Y.-B. Lattice-Coupled Si/MXene Confined by Hard Carbon for Fast Sodium-Ion Conduction. ACS Appl. Energy Mater. 2021, 4, 7268–7277. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Z.-Z.; Lv, W.; Lv, R.; Shen, W.; Kang, F.; Yang, Q.-H.; Weng, Y.; Huang, Z.-H. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon 2019, 153, 625–633. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.Y.; Yang, W.; Tian, H.; Han, Z.; Ying, H.; Wang, G.; Han, W.Q. Novel Synthesis of Red Phosphorus Nanodot/Ti3C2Tx MXenes from Low-Cost Ti3SiC2 MAX Phases for Superior Lithium- and Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 42086–42093. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Huang, J.; Feng, Y.; Zu, L.; Peng, C.; Zheng, L.; Zheng, L.; Chen, Z.; Liu, G.; Chen, B.; et al. Black Phosphorus Quantum Dot/Ti3C2 MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium-Ion Storage. Adv. Energy Mater. 2018, 8, 1801514. [Google Scholar] [CrossRef]
- Yang, E.; Ji, H.; Kim, J.; Kim, H.; Jung, Y. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 2015, 17, 5000–5005. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wang, J.; Shi, Z.; Fan, L. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater. Lett. 2018, 219, 45–50. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Majed, A.; Dun, C.; Yang, F.; Guo, J.; Prenger, K.; Urban, J.J.; Naguib, M. Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 2021, 3, 1422–1430. [Google Scholar] [CrossRef]
- Du, L.; Duan, H.; Xia, Q.; Jiang, C.; Yan, Y.; Wu, S. Hybrid Charge-Storage Route to Nb2CTx MXene as Anode for Sodium-Ion Batteries. ChemistrySelect 2020, 5, 1186–1192. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Xie, X.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef]
- Ming, K.; Zhang, Z.; Li, H. Creating porous texture on Ti3C2Tx for enhanced sodium-ion battery anode. J. Mater. Sci. 2022, 57, 14959–14968. [Google Scholar] [CrossRef]
- Lian, P.; Dong, Y.; Wu, Z.-S.; Zheng, S.; Wang, X.; Sen, W.; Sun, C.; Qin, J.; Shi, X.; Bao, X. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Jin, S.; Lv, M.; Zhang, Y.; Kong, X.; Xu, H.; Ma, T.; Luo, X.; Tan, H.; et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667. [Google Scholar] [CrossRef]
- Zhao, D.; Clites, M.; Ying, G.; Kota, S.; Wang, J.; Natu, V.; Wang, X.; Pomerantseva, E.; Cao, M.; Barsoum, M.W. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 2018, 54, 4533–4536. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Fang, C.; Jin, C.; Yuan, H.; Sheng, O.; Fang, R.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 7794–7806. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Hou, S.; Li, Y.; Lu, T.; Yao, Y.; Pan, L. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 2018, 6, 1234–1243. [Google Scholar] [CrossRef]
- Sun, S.; Xie, Z.; Yan, Y.; Wu, S. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 2019, 366, 460–467. [Google Scholar] [CrossRef]
- Natu, V.; Clites, M.; Pomerantseva, E.; Barsoum, M.W. Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 2018, 6, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Zhu, Q.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B. MXene-Bonded Flexible Hard Carbon Film as Anode for Stable Na/K-Ion Storage. Adv. Funct. Mater. 2019, 29, 1906282. [Google Scholar] [CrossRef]
- Zhang, P.; Soomro, R.A.; Guan, Z.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020, 29, 163–171. [Google Scholar] [CrossRef]
- Wei, C.; Cao, H.; Deng, W.; Zhao, M.; Guo, C.; Liu, P.; Xu, B.; Guo, J. Graphene-mediated dense integration of Ti3C2Tx MXene monoliths for compact energy storage: Balancing kinetics and packing density. Appl. Surf. Sci. 2022, 604, 154565. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Zhao, Y.-X.; Gou, L.; Wang, L.-Y.; Wang, M.; Li, Y.; Hu, S.-L. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage. Rare Metals 2022, 41, 1626–1636. [Google Scholar] [CrossRef]
- Zhao, R.; Qian, Z.; Liu, Z.; Zhao, D.; Hui, X.; Jiang, G.; Wang, C.; Yin, L. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy 2019, 65, 104037. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, W.; Liu, S.; Zhang, T.; Song, Z.; Shao, W.; Mao, R.; Yao, M.; Jian, X.; Hu, F. Highly stable Ti3C2Tx MXene-based sandwich-like structure via interfacial self-assembly of nitrogen-rich polymer network for superior sodium-ion storage performance. Chem. Eng. J. 2023, 451, 138763. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Qin, J.; Xie, X.; Yang, R.; Cao, M. Surface Charge Engineering for Covalently Assembling Three-Dimensional MXene Network for All-Climate Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 39181–39194. [Google Scholar] [CrossRef]
- Huang, J.; Meng, R.; Zu, L.; Wang, Z.; Feng, N.; Yang, Z.; Yu, Y.; Yang, J. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy 2018, 46, 20–28. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, J.; Song, J.; Wu, W.; Liu, H.; Wang, G. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Zou, P.; Wang, G.; Xiong, Y.; Liu, Y.; Ren, F.; Xiong, X. Nitrogen-doped carbon decorated TiO2/Ti3C2T MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Y.; Sun, X.; Zhang, Y.; Hou, L.; Zhang, Q.; Yuan, C. In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim. Acta 2018, 271, 165–172. [Google Scholar] [CrossRef]
- Wang, P.; Lu, X.; Boyjoo, Y.; Wei, X.; Zhang, Y.; Guo, D.; Sun, S.; Liu, J. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 2020, 451, 227756. [Google Scholar] [CrossRef]
- Gao, P.; Shi, H.; Ma, T.; Liang, S.; Xia, Y.; Xu, Z.; Wang, S.; Min, C.; Liu, L. MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti-O-C Bonding for Enhanced Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 51028–51038. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xie, X.; Choi, S.; Zhao, Y.; Liu, H.; Wang, C.; Chang, S.; Wang, G. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452. [Google Scholar] [CrossRef]
- Tao, M.; Zhang, Y.; Zhan, R.; Guo, B.; Xu, Q.; Xu, M. A chemically bonded CoNiO2 nanoparticles/MXene composite as anode for sodium-ion batteries. Mater. Lett. 2018, 230, 173–176. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Geng, M.; Shao, W.; Chen, Y.; Liu, X.; Ou, M. SnO2/MXene nanoparticles as a superior high-rate and cycling-stable anode for sodium ion batteries. Mater. Lett. 2021, 304, 130704. [Google Scholar] [CrossRef]
- Wu, F.; Jiang, Y.; Ye, Z.; Huang, Y.; Wang, Z.; Li, S.; Mei, Y.; Xie, M.; Li, L.; Chen, R. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 2019, 7, 1315–1322. [Google Scholar] [CrossRef]
- Du, G.; Tao, M.; Gao, W.; Zhang, Y.; Zhan, R.; Bao, S.; Xu, M. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance. Inorg. Chem. Front. 2019, 6, 117–125. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Liu, L.; Min, C.; Liang, S.; Xu, Z.; Xue, Y.; Hong, C.; Cai, Z. Construction of MoS2/Mxene heterostructure on stress-modulated kapok fiber for high-rate sodium-ion batteries. J. Colloid Interf. Sci. 2022, 605, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Cao, J.; Valerii, S.; Xu, H.; Wang, L.; Han, W. MXene-Bonded hollow MoS2/Carbon sphere strategy for high-performance flexible sodium ion storage. Chem. Eng. J. 2022, 430, 132755. [Google Scholar] [CrossRef]
- Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W.Q. Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage. Adv. Energy Mater. 2022, 12, 2202052. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, P.; Wu, L.; Dou, H.; Zhang, X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 2018, 334, 932–938. [Google Scholar] [CrossRef]
- Zang, R.; Li, P.; Wang, G. Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries. Chem. Res. Chin. Univ. 2020, 36, 431–438. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, R.; Xu, Q.; Liu, H.; Tao, M.; Luo, Y.; Bao, S.; Li, C.; Xu, M. Circuit board-like CoS/MXene composite with superior performance for sodium storage. Chem. Eng. J. 2019, 357, 220–225. [Google Scholar] [CrossRef]
- Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W.-Q. In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via Lewis acidic etching route for efficient sodium storage. J. Mater. Chem. A 2022, 10, 22135–22144. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Hu, L.; Xu, Q.; Li, Y.; Liu, D.; Xu, M. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. J. Alloy. Compd. 2018, 732, 448–453. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, M.; Jiang, W.; Yao, J.; Pan, L.; Yang, J. Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. J. Alloy. Compd. 2021, 887, 161318. [Google Scholar] [CrossRef]
- Xie, X.; Makaryan, T.; Zhao, M.; Van Aken, K.L.; Gogotsi, Y.; Wang, G. MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502161. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, P.; Jiang, J.; Ding, B.; Dou, H.; Zhang, X. MoS2-Nanosheet-Decorated 2D Titanium Carbide (MXene) as High-Performance Anodes for Sodium-Ion Batteries. ChemElectroChem 2017, 4, 1560–1565. [Google Scholar] [CrossRef]
- He, F.; Tang, C.; Liu, Y.; Li, H.; Du, A.; Zhang, H. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries. J. Mater. Sci. Technol. 2022, 100, 101–109. [Google Scholar] [CrossRef]
- Wen, B.; Kong, N.; Huang, M.; Fu, L.; Yan, D.; Tian, Y.; Liu, J.; Tan, R.; Han, F. 1T–2H MoS2/Ti3C2 MXene Heterostructure with High-Rate and High-Capacity Performance for Sodium-Ion Batteries. Energy & Fuels 2022, 36, 11234–11244. [Google Scholar]
- Zhang, H.; Song, J.; Li, J.; Feng, J.; Ma, Y.; Ma, L.; Liu, H.; Qin, Y.; Zhao, X.; Wang, F. Interlayer-Expanded MoS2 Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO2 as High-Performance Anode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 16300–16309. [Google Scholar] [CrossRef]
- Zhang, W.X.; Zhang, J.H.; Zhang, Y.K.; He, C.; Zhao, P. NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties. Ionics 2022, 28, 4621–4629. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qin, B.; Zhang, Y.; Liu, Z.; Fan, H. 2D-2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem. Eng. J. 2022, 431, 133796. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Guo, X.; Sheng, X.; Li, J.; Wang, C.; Wang, G. Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Res. 2021. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Lv, M.; Jin, S.; Xu, J.; Kong, X.; Li, X.; Liu, Z.; Chang, X.; Sun, W.; et al. Interfacial Covalent Bonding Endowing Ti3C2-Sb2S3 Composites High Sodium Storage Performance. Small 2022, 18, e2104293. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Wu, Y.; Li, J.; Zhong, W.; Tang, W.; Zhang, X.; Xu, M. Sheet-to-layer structure of SnSe2/MXene composite materials for advanced sodium ion battery anodes. New J. Chem. 2021, 45, 1944–1952. [Google Scholar] [CrossRef]
- Tan, Y.; Yi, M.; Zhu, Z.; Zhang, X.; Qin, K.; Zhang, J.; Rongshu, Z. Carbon-coated MoSe2/MXene heterostructures as active materials for high-performance Na+ batteries. Mater. Today Commun. 2022, 31, 103740. [Google Scholar] [CrossRef]
- Xu, E.; Li, P.; Quan, J.; Zhu, H.; Wang, L.; Chang, Y.; Sun, Z.; Chen, L.; Yu, D.; Jiang, Y. Dimensional Gradient Structure of CoSe2@CNTs-MXene Anode Assisted by Ether for High-Capacity, Stable Sodium Storage. Nano-micro Lett. 2021, 13, 40. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, M.; Liu, X.; Fan, H.; Zhang, Y.; Yang, H.Y. Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries. J. Colloid Interf. Sci. 2022, 626, 700–709. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Z.S.; Zheng, S.; Wang, X.; Qin, J.; Wang, S.; Shi, X.; Bao, X. Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS Nano 2017, 11, 4792–4800. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.; Miao, C.; Zhu, K.; Chen, Y.; Du, F.; Yin, J.; Ye, K.; Cheng, K.; Yan, J.; et al. MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors. Nano-micro Lett. 2020, 12, 128. [Google Scholar] [CrossRef]
- Tang, J.; Huang, X.; Lin, T.; Qiu, T.; Huang, H.; Zhu, X.; Gu, Q.; Luo, B.; Wang, L. MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Mater. 2020, 26, 550–559. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, B.; Bai, L.; Ma, X.; Lu, H.; Yao, J.; Zhang, C.; Gao, H. Ag Nanoparticles decorated few-layer Nb2CT nanosheets architectures with superior lithium/sodium-ion storage. Electrochim. Acta 2022, 402, 139566. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F.; Zhao, X.; Fan, L.-Z. Constructing MOF-derived CoP-NC@MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage. J. Mater. 2022, 8, 30–37. [Google Scholar] [CrossRef]
- Yang, C.; Sun, X.; Zhang, Y.R.; Liu, Y.; Zhang, Q.A.; Yuan, C.Z. Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance. Mater. Lett. 2019, 236, 408–411. [Google Scholar] [CrossRef]
- Zhang, S.; Ying, H.; Huang, P.; Wang, J.; Zhang, Z.; Zhang, Z.; Han, W.-Q. Ultrafine Sb Pillared Few-Layered Ti3C2Tx MXenes for Advanced Sodium Storage. ACS Appl. Energy Mater. 2021, 4, 9806–9815. [Google Scholar] [CrossRef]
- Chen, H.; Chen, N.; Zhang, M.; Li, M.; Gao, Y.; Wang, C.; Chen, G.; Du, F. Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology 2019, 30, 134001. [Google Scholar] [CrossRef]
- Xu, H.; Fan, J.; Pang, D.; Zheng, Y.; Chen, G.; Du, F.; Gogotsi, Y.; Dall’Agnese, Y.; Gao, Y. Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chem. Eng. J. 2022, 436, 135012. [Google Scholar] [CrossRef]
- Yang, Q.; Jiao, T.; Li, M.; Li, Y.; Ma, L.; Mo, F.; Liang, G.; Wang, D.; Wang, Z.; Ruan, Z.; et al. In situ formation of NaTi2(PO4)3 cubes on Ti3C2 MXene for dual-mode sodium storage. J. Mater. Chem. A 2018, 6, 18525–18532. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Y.; Xu, N.; Lian, X.; Li, L.; Hu, Y.; Peng, S. Facile Synthesis of FePS3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage. Nano-micro Lett. 2020, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Li, J.; Yang, J.; Wang, N.; Liu, Z.; Wang, T.; Su, D.; Wang, C.; Wang, G. Bismuth Nanoparticles Anchored on Ti3C2Tx MXene Nanosheets for High-Performance Sodium-Ion Batteries. Chem. Asian J. 2021, 16, 3774–3780. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Gan, W.; Ci, L.; Li, D.; Yuan, Q. VS4 nanoarrays pillared Ti3C2Tx with enlarged interlayer spacing as anode for advanced lithium/sodium ion battery and hybrid capacitor. J. Power Sources 2022, 534, 231412. [Google Scholar] [CrossRef]
- Zhong, W.; Tao, M.; Tang, W.; Gao, W.; Yang, T.; Zhang, Y.; Zhan, R.; Bao, S.-J.; Xu, M. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209. [Google Scholar] [CrossRef]
Materials | Long-Term Capacity | Current Density | Cycle Number | Rate Performance | Charge Voltage at Medium Capacity | Ref. |
---|---|---|---|---|---|---|
Ti3C2Tx | 103 mAh/g | 0.1 A/g | 500 | 85 mAh/[email protected] A/g | ~1.5 V | [57] |
Ti2C0.5N0.5Tx | 46 mAh/g | 0.2 A/g | 500 | 60 mAh/g@1 A/g | ~1.5 V | [58] |
Nb2CTx | 102 mAh/g | 1 A/g | 500 | 99 mAh/g@2 A/g | ~1.7 V | [59] |
3D Ti3C2Tx | 295 mAh/g | 2.5 C | 1000 | 120 mAh/g@25 C | ~1.5 V | [60] |
3D V2CTx | 310 mAh/g | 2.5 C | 1000 | 170 mAh/g@25 C | ~1.5 V | [60] |
3D Mo2CTx | 290 mAh/g | 2.5 C | 1000 | 125 mAh/g@25 C | ~1.5 V | [60] |
Porous Ti3C2Tx | 189 mAh/g | 1 A/g | 1000 | 24 mAh/g@100 A/g | ~1.75 V | [37] |
P-Ti3C2Tx | 68 mAh/g | 0.5 A/g | 500 | 88 mAh/g@5 A/g | ~1.6 V | [61] |
a-Ti3C2 MNRs | ~50 mAh/g | 0.2 A/g | 500 | 83 mAh/[email protected] A/g | ~1.0 V | [62] |
Oligolayered Ti3C2Tx | 280 mAh/g | 0.5 A/g | 500 | 340 mAh/g@1 A/g | ~1.5 V | [63] |
Na-c-Ti3C2Tx | 54 mAh/g | 1.5 A/g | 1000 | 61 mAh/g@1 A/g | ~1.75 | [64] |
Na-Ti3C2 | 85 mAh/g | 2 A/g | 2000 | ~110 mAh/g@3 A/g | ~1.3 V | [65] |
S-Ti3C2Tx | 74.2 mAh/g | 0.5 A/g | 2000 | 113.9 mAh/g@4 A/g | ~1.5 V | [66] |
S-Ti3C2 | 135 mAh/g | 2 A/g | 1000 | 136.6 mAh/g@5 A/g | ~1.5 V | [67] |
Materials | Long-Term Capacity | Current Density | Cycle Number | Rate Performance | Charge Voltage at Medium Capacity | Ref. |
---|---|---|---|---|---|---|
HC/MXene | 272.3 mAh/g | 0.2 A/g | 1500 | 66.7 mAh/g@10 A/g | ~0.7 V | [69] |
T-MXene@C | 139.5 mAh/g | 1 A/g | 3000 | 77.8 mAh/g@10 A/g | -- | [70] |
rGO/p-Ti3C2Tx | ~110 mAh/g | 1 A/g | 2000 | ~70 mAh/g@5 A/g | ~1.5 V | [53] |
G-Ti3C2Tx | 167 mAh/cm3 | 0.5 A/g | 2000 | 112.4 mAh/g@5 A/g | ~1.7 V | [71] |
Si/MXene microspheres | 376 mAh/g | 0.1 A/g | 500 | 63 mAh/g@2 A/g | ~1.4 V | [72] |
Si/MXene@HC | 208 mAh/g | 0.05 A/g | 500 | 122.5 mAh/g@1 A/g | ~1.2 V | [52] |
p-Ti3C2 | 80 mAh/g | 0.5 A/g | 100 | ~60 mAh/g@1 A/g | ~0.8 V | [61] |
BPQD/Ti3C2 | ~170 mAh/g | 0.2 A/g | 100 | ~150 mAh/g@2 A/g | ~1.6 V | [55] |
BP/MXenes | 658 mAh/g | 1 A/g | 2000 | 164 mAh/g@2 A/g | ~0.8 V | [73] |
MXene/poly | 148.4 mAh/g | 1 A/g | 5000 | 105 mAh/g@2 A/g | ~1.4 V | [74] |
PANI/Ti3C2Tx | 135.4 mAh/g | 2 A/g | 10,000 | 142 mAh/g@5 A/g | ~1.5 V | [69] |
Materials | Long-Term Capacity | Current Density | Cycle Number | Rate Performance | Charge Voltage at Medium Capacity | Ref. |
---|---|---|---|---|---|---|
Na0.23TiO2/Ti3C2 | 56 mAh/g | 2 A/g | 4000 | 47 mAh/g@3 A/g | ~1.0 V | [76] |
TiO2@Ti3C2Tx | 116 mAh/g | 0.96 A/g | 5000 | 68 mAh/[email protected] A/g | ~1.5 V | [77] |
NC/TiO2/Ti3C2Tx | 157.5 mAh/g | 2 A/g | 1900 | 100.1 mAh/g@10 A/g | ~1.2 V | [78] |
Hierarchical TiO2/Ti3C2 | 101 mAh/g | 0.2 A/g | 500 | 52 mAh/g@2 A/g | ~1.6 V | [79] |
Pillar-free TiO2/Ti3C2 | 153 mAh/g | 0.6 A/g | 100 | 151.5 mAh/g@1 A/g | ~1.5 V | [80] |
HC-TiO2/MXenes | 660 mAh/g | 1 A/g | 100 | 250 mAh/g@1 A/g | ~0.8 V | [81] |
Sb2O3/Ti3C2Tx | 472 mAh/g | 0.1 A/g | 100 | 295 mAh/g@2 A/g | ~1.0 V | [82] |
CoNiO2/MXene | 223 mAh/g | 0.07 A/g | 140 | 188 mAh/[email protected] A/g | 1.3 V | [83] |
SnO2/MXene | 208.6 mAh/g | 0.4 A/g | 100 | 81 mAh/g@2 A/g | 1.25 V | [84] |
VO2/MXene | 280.9 mAh/g | 0.1 A/g | 200 | 206 mAh/[email protected] A/g | ~1.5 V | [85] |
Materials | Long-Term Capacity | Current Density | Cycle Number | Rate Performance | Charge Voltage at Medium Capacity | Ref. |
---|---|---|---|---|---|---|
MoS2/Ti3C2Tx | 250.9 mAh/g | 0.1 A/g | 100 | 162.7@1 A/g | >1.5 V | [97] |
MoS2/Ti3C2Tx | 331 mAh/g | 0.1 A/g | 70 | [email protected] A/g | >1.5 V | [86] |
C-MoS2/CNTs-Ti3C2 | 562 mAh/g | 0.1 A/g | 200 | 475@2 A/g | >1.5 V | [98] |
MoS2/Ti3C2Tx/CKF | 298 mAh/g | -- | 300 | 434.7@1 A/g | ~1.8 V | [87] |
TH-MoS2/Ti3C2 | 582 mAh/g | 1 A/g | 600 | 439.3@5 A/g | >1.5 V | [99] |
MoS2@MXene@TiO2 | 568.3 mAh/g | 2 A/g | 100 | 359.6@5 A/g | >1.5 V | [100] |
Nb2CTx@MoS2@C | 403 mAh/g | 1 A/g | 2000 | 260@40 A/g | >1.5 V | [42] |
Nb2CTx@MoS2 | 394 mAh/g | 1 A/g | 1000 | 196@20 A/g | >1.5 V | [88] |
SnS2/MXene | 322 mAh/g | 0.1 A/g | 200 | 78 mAh/g@2 A/g | ~1.7 V | [90] |
FeS2/MXene | 474.9 mAh/g | 5 A/g | 600 | 456.6 mAh/g@10 A/g | ~1.4 V | [89] |
CoxFe1-xS2@S-Ti3C2 | 399 mAh/g | 5 A/g | 600 | 596 mAh/g@10 A/g | ~1.8 V | [91] |
CoS/MXene | 267 mAh/g | 2 A/g | 1700 | 272 mAh/g@5 A/g | ~1.8 V | [92] |
SnS/MXene | 320 mAh/g | 0.5 A/g | 100 | 255.9 mAh/g@1 A/g | ~1.45 V | [94] |
CuS/MXene | 347 mAh/g | 3 A/g | 800 | 346.3 mAh/g@8 A/g | ~1.7 V | [93] |
NiS2/MXene | 189 mAh/g | 1 A/g | 200 | 147 mAh/g@2 A/g | ~1.6 V | [101] |
ReS2/MXene | 202 mAh/g | 2 A/g | 200 | 138 mAh/g@5 A/g | ~1.75 V | [102] |
MoS3/Ti3C2Tx | 611 mAh/g | 2 A/g | 1000 | ~370 mAh/g@5 A/g | ~2.0 V | [50] |
Sb2S3@m-Ti3C2Tx | 72 mAh/g | 2 A/g | 1000 | 232 mAh/g@1 A/g | ~1.25 V | [95] |
Sb2S3/Ti3C2 | 464 mAh/g | 1 A/g | 500 | 533 mAh/g@2 A/g | ~1.0 V | [103] |
Materials | Long-Term Capacity | Current Density | Cycle Number | Rate Performance | Charge Voltage at Medium Capacity | Ref. |
---|---|---|---|---|---|---|
CoSe2@CNTs-MXene | 400 mAh/g | 2 A/g | 200 | 347.5 mAh/g@5 A/g | ~1.75 V | [107] |
Co0.5Ni0.5Se2/Ti3C2 | 338 mAh/g | 1 A/g | 600 | 337 mAh/g@3 A/g | ~1.75 V | [108] |
SnSe2/Ti3C2Tx | 245 mAh/g | 1 A/g | 445 | 192 mAh/g@5 A/g | ~1.5 V | [105] |
MoSe2/Mo2CTx/C | 484.4 mAh/g | 1 A/g | 2200 | 330.6 mAh/g@10 A/g | ~1.5 V | [106] |
FePS3@MXene | 676.1 mAh/g | 0.1 A/g | 90 | 449 mAh/g@5 A/g | ~1.6 V | [119] |
FeVO4/MXene | 105 mAh/g | 5 A/g | 5000 | 98 mAh/g@10 A/g | ~1.5 V | [117] |
NaTi2(PO4)3/Ti3C2 | ~65 mAh/g | 2 A/g | 2000 | ~67 mAh/g@2 A/g | ~1.25 V | [114] |
MXene@NTP-C | ~110 mAh/g | 5 A/g | 10,000 | 102 mAh/g@10 A/g | ~2.0 V | [118] |
Ag-Nb2CTx | 187 mAh/g | 5 A/g | 2000 | 188 mAh/g@5 A/g | ~1.6 V | [112] |
Sb/p-Ti3C2Tx | 216.8 mAh/g | 0.2 A/g | 300 | 126.6 mAh/g@2 A/g | ~0.9 V | [115] |
Ti3C2Tx@Sb | 148 mAh/g | 1 A/g | 8000 | 127 mAh/g@2 A/g | ~1.2 V | [116] |
Bi/MXene | 301 mAh/g | 5 A/g | 2500 | 307 mAh/g@8 A/g | ~0.65 V | [120] |
CoP-NC@Ti3C2Tx | 101.6 mAh/g | 0.5 A/g | 500 | 64.1 mAh/[email protected] A/g | -- | [113] |
VS4@L-Ti3C2Tx | 599 mAh/g | 1 A/g | 40 | 33 mAh/g@5 A/g | ~1.6 V | [121] |
TiS2@Cpvp | 321.4 mAh/g | 10 A/g | 5000 | 339 mAh/g@10 A/g | ~1.65 V | [111] |
NaTi1.5O8.3 | ~140 mAh/g | 0.2 A/g | 150 | 101 mAh/g@2 A/g | ~0.65 V | [109] |
M-TiO2@rGO | 123.3 mAh/g | 5 A/g | 5000 | 142 mAh/g@2 A/g | ~1.75 V | [110] |
Na2Ti3O7@C | 119 mAh/g | 2 A/g | 200 | 115 mAh/g@2 A/g | ~0.75 V | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Zheng, X.; Xu, J.; Ni, Q.; Luo, L.; Cai, Z.; Sun, Z.; Lin, L.; Sun, G. A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites. Batteries 2023, 9, 48. https://doi.org/10.3390/batteries9010048
Yuan M, Zheng X, Xu J, Ni Q, Luo L, Cai Z, Sun Z, Lin L, Sun G. A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites. Batteries. 2023; 9(1):48. https://doi.org/10.3390/batteries9010048
Chicago/Turabian StyleYuan, Mengwei, Xingzi Zheng, Jingshen Xu, Qiao Ni, Luoqi Luo, Zejun Cai, Zemin Sun, Liu Lin, and Genban Sun. 2023. "A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites" Batteries 9, no. 1: 48. https://doi.org/10.3390/batteries9010048
APA StyleYuan, M., Zheng, X., Xu, J., Ni, Q., Luo, L., Cai, Z., Sun, Z., Lin, L., & Sun, G. (2023). A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites. Batteries, 9(1), 48. https://doi.org/10.3390/batteries9010048