MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Synthesis of Electrocatalysts
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Han, X.P.; Hu, Z.; Zhang, X.L.; Tao, Z.L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.M.; Xu, L.; Hu, G.W.; Mai, L.Q.; Cui, Y. Nanowires for Electrochemical Energy Storage. Chem. Rev. 2019, 119, 11042–11109. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Wang, R. Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. Small 2021, 17, 2006813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Q.; Zhu, J.X.; Yan, Q.Y.; Dou, S.X.; Sun, W.P. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317. [Google Scholar] [CrossRef]
- Aman, S.; Ansari, M.Z.; Abdullah, M.; Abid, A.G.; Bashir, I.; Nisa, M.U.; Manzoor, S.; Shawky, A.M.; Znaidia, S.; Farid, H.M.T. Facile synthesis of CoCo2O4/rGO spinel nanoarray as a robust electrode for energy storage devices. Inorg. Chem. Commun. 2022, 146, 110136. [Google Scholar] [CrossRef]
- Yu, X.Y.; Lou, X.W. (David) Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. Adv. Energy Mater. 2018, 8, 1701592. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, L.J. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem. Eng. J. 2022, 430, 132745. [Google Scholar] [CrossRef]
- Guo, Y.N.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal- Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
- Kulkarni, P.; Nataraj, S.K.; Balakrishna, R.G.; Nagarajua, D.H.; Reddy, M.V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 2017, 5, 22040–22094. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.J.; Zhu, H.W. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Zhu, W.D.; Cheng, Y.; Wang, C.; Pinna, N.i.; Lu, X.F. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale 2021, 13, 9112–9146. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Q.; Bai, T.; Wang, W.G.; He, F.L.; Ye, M.D. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem. Eng. J. 2021, 409, 127237. [Google Scholar] [CrossRef]
- Yu, M.Q.; Budiyanto, E.; Tüysüz, H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202103824. [Google Scholar]
- Zhang, Y.C.; Han, C.D.; Gao, J.; Pan, L.; Wu, J.T.; Zhu, X.D.; Zou, J.J. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catal. 2021, 11, 12485–12509. [Google Scholar] [CrossRef]
- Ding, H.; Liu, H.F.; Chu, W.S.; Wu, C.Z.; Xie, Y. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chem. Rev. 2021, 121, 13174–13212. [Google Scholar] [CrossRef]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Jiang, W.J.; Tang, T.; Zhang, Y.; Hu, J.S. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Acc. Chem. Res. 2020, 53, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.Q.; Wu, Z.X.; Wang, J.; Fu, G.T.; Tang, Y.W. Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 16068–16088. [Google Scholar] [CrossRef]
- Zhao, Y.; You, J.H.; Wang, L.; Bao, W.T.; Yao, R.Y. Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy. 2021, 46, 39146–39182. [Google Scholar] [CrossRef]
- Qin, J.F.; Yang, M.; Hou, S.; Dong, B.; Chen, T.S.; Ma, X.; Xie, J.Y.; Zhou, Y.N.; Nan, J.; Chai, Y.M. Copper and cobalt co-doped Ni3S2 grown on nickel foam for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 502, 144172. [Google Scholar] [CrossRef]
- Ma, J.J.; Li, W.Y.; Zhang, X.X.; Cheng, Y.C.; Zhang, F. Free-standing Ni3S2 nanowire derived from in-situ synthetized coordination supramolecular as electrode materials for high performance asymmetric supercapacitors. Appl. Surf. Sci. 2020, 507, 145074. [Google Scholar] [CrossRef]
- Li, G.F.; Xie, G.Q.; Chen, D.; Gong, C.; Chen, X.; Zhang, Q.; Pang, B.L.; Zhang, Y.C.; Li, C.J.; Hu, J.; et al. Facile synthesis of bamboo-like Ni3S2@NCNT as efficient and stable electrocatalysts for non-enzymatic glucose detection. Appl. Surf. Sci. 2022, 585, 152683. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, Y.Q.; Wang, C.; Huang, H.N.; Xing, D.N.; Liu, Y.Y.; Wang, Z.Y.; Wang, P.; Zheng, Z.K.; Cheng, H.F.; et al. Tailoring the composition and structure of Ni3S2 by introduction of Co towards high efficiency energy storage device. Chem. Eng. J. 2021, 403, 126285. [Google Scholar] [CrossRef]
- Xu, Q.C.; Chu, M.S.; Liu, M.M.; Zhang, J.H.; Jiang, H.; Li, C.Z. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chem. Eng. J. 2021, 411, 128488. [Google Scholar] [CrossRef]
- Wen, Y.X.; Liu, Y.P.; Dang, S.; Tian, S.H.; Li, H.Q.; Wang, Z.L.; He, D.Y.; Wu, Z.S.; Cao, G.Z.; Peng, S.L. High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors. J. Power Sources 2019, 423, 106–114. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.D.; Lan, K.; Iqbal, K.; Liu, Y.; Ma, P.; Zhao, Z.M.; Luo, S.; Luo, Y.T.; Ma, J.T. Optimization of iron-doped Ni3S2 nanosheets by disorder engineering for oxygen evolution reaction. Nanoscale 2019, 11, 2355–2365. [Google Scholar] [CrossRef]
- Illathvalappil, R.; Walko, P.S.; Kanheerampockil, F.; Bhat, S.K.; Devi, R.N.; Kurungot, S. Hierarchical Nanoflower Arrays of Co9S8-Ni3S2 on Nickel Foam: A Highly Efficient Binder-Free Electrocatalyst for Overall Water Splitting. Chem. Eur. J. 2020, 26, 7900–7911. [Google Scholar] [CrossRef]
- Chen, H.M.; Zhou, J.J.; Li, Q.; Zhao, S.H.; Yu, X.B.; Tao, K.; Hu, Y.P.; Han, L. MOF-assisted construction of a Co9S8@Ni3S2/ZnS microplate array with ultrahigh areal specific capacity for advanced supercapattery. Dalton Trans. 2020, 49, 10535–10544. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Xiao, Z.Y.; Zhai, S.R.; Wang, H.S.; Cai, W.J.; Qin, L.F.; Huang, J.Y.; Zhao, D.; Li, Z.C.; An, Q.D. Construction of strawberry-like Ni3S2@Co9S8 hetero-nanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy density supercapacitors. J. Mater. Chem. A 2019, 7, 17345–17356. [Google Scholar] [CrossRef]
- Lin, Y.F.; Chen, X.Y.; Chang, P.; Liu, Z.L.; Ren, G.H.; Tao, J.G. Hierarchical design of Ni3S2@Co9S8 nanotubes for supercapacitors with long cycle-life and high energy density. J. Alloys Compd. 2022, 900, 163503. [Google Scholar] [CrossRef]
- Yao, Y.L.; He, J.M.; Ma, L.L.; Wang, J.X.; Peng, L.; Zhu, X.D.; Li, K.S.; Qu, M.N. Self-supported Co9S8-Ni3S2-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting. J. Colloid Interf. Sci. 2022, 616, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Wang, H.H.; Zheng, X.H.; Du, Y.; Zhao, C.Y.; Qi, J.L.; Cao, J.; Fei, W.D.; Feng, J.C. Controllable synthesis of core-branch Ni3S2/Co9S8 directly on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 2018, 401, 329–335. [Google Scholar] [CrossRef]
- Zhang, S.P.; Ling, F.X.; Wang, L.F.; Xu, R.; Ma, M.Z.; Cheng, X.L.; Bai, R.L.; Shao, Y.; Huang, H.J.; Li, D.J.; et al. An Open-Ended Ni3S2–Co9S8 Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassium-Ion Batteries. Adv. Mater. 2022, 34, 2201420. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xi, S.Q.; Yang, X.G.; Wu, H.J. In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Solid State Chem. 2019, 270, 398–406. [Google Scholar] [CrossRef]
- Lin, R.B.; Zhang, Z.J.; Chen, B.L. Achieving High Performance Metal−Organic Framework Materials through Pore Engineering. Acc. Chem. Res. 2021, 54, 3362–3376. [Google Scholar] [CrossRef]
- Cai, G.R.; Yan, P.; Zhang, L.L.; Zhou, H.C.; Jiang, H.L. Metal−Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem. Rev. 2021, 121, 12278–12326. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, Q.C.; Pan, Z.H.; Li, L.; Li, C.W.; Ling, Y.; Wang, Z.X.; Chen, M.X.; Wang, Z.; Yao, Y.G.; et al. Freestanding Metal−Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem. Rev. 2022, 122, 10087–10125. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.Q.; Cao, Z.Y.; Yin, Z.H.; Ma, T.L.; Chen, S.R. Current progress of metal sulfides derived from metal–organic frameworks for advanced electrocatalysis: Potential electrocatalysts with diverse applications. J. Mater. Chem. A 2022, 10, 1617–1641. [Google Scholar] [CrossRef]
- Du, J.; Li, F.; Sun, L.C. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695. [Google Scholar] [CrossRef]
- Wang, H.F.; Chen, L.Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef]
- Tang, X.R.; Li, N.; Pang, H. Metal–organic frameworks-derived metal phosphides for electrochemistry application. Green Energy Environ. 2022, 7, 636–661. [Google Scholar] [CrossRef]
- da Silva, M.I.; Machado, Í.R.; Toma, H.E.; Araki, K.; Angnes, L.; Gonçalves, J.M. Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides. J. Mater. Chem. A 2022, 10, 430–474. [Google Scholar] [CrossRef]
- Tan, X.H.; Wu, Y.B.; Lin, X.M.; Zeb, A.; Xu, X.; Luo, Y.F.; Liu, J.C. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion Batteries. Inorg. Chem. Front. 2020, 7, 4939–4955. [Google Scholar] [CrossRef]
- He, Y.Z.; Yin, Z.; Wang, Z.W.; Wang, H.; Xiong, W.P.; Song, B.; Qin, H.; Xu, P.; Zeng, G.M. Recent progress on mixed transition metal nanomaterials based on metal–organic frameworks for energy-related applications. J. Mater. Chem. A 2022, 10, 9788–9820. [Google Scholar] [CrossRef]
- Cai, Z.C.; Yamada, I.; Yagi, S. ZIF-Derived Co9-xNixS8 Nanoparticles Immobilized on N-Doped Carbons as Efficient Catalysts for High-Performance Zinc−Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5847–5856. [Google Scholar] [CrossRef]
- Du, X.Q.; Su, H.; Zhang, X.S. Metal-Organic Framework-Derived Cu-Doped Co9S8 Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 16917–16926. [Google Scholar] [CrossRef]
- Shabbir, B.; Ansari, M.Z.; Manzoor, S.; Abid, A.G.; Nisa, M.U.; Shawky, A.M.; Znaidia, S.; Aman, S.; Ashiq, M.N.; Taha, T.A. Facile synthesis of Er-MOF/Fe2O3 nanocomposite for oxygen evolution reaction. Mater. Chem. Phys. 2022, 292, 126861. [Google Scholar] [CrossRef]
- Zhang, D.J.; Zhang, X.B.; Bu, Y.P.; Zhang, J.C.; Zhang, R.C. Copper Cobalt Sulfide Structures Derived from MOF Precursors with Enhanced Electrochemical Glucose Sensing Properties. Nanomaterials 2022, 12, 1394. [Google Scholar] [CrossRef]
- Zhang, D.J.; Jiang, B.; Liu, Y.; Zhang, J.C.; Wang, Y.H.; Wei, M.L.; Zhang, R.C.; Li, C.W.; Huang, L.L. Synthesis of NiSe nanorod array structure as a binder-free cathode for an aqueous rechargeable Ni–Zn battery. New J. Chem. 2022, 46, 14451–14457. [Google Scholar] [CrossRef]
- Zhang, D.J.; Wang, Z.M.; Li, J.K.; Hu, C.M.; Zhang, X.B.; Jiang, B.; Cao, Z.; Zhang, J.C.; Zhang, R.C. MOF-derived ZnCo2O4 porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Adv. 2020, 10, 9063–9069. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.B.; Wang, X.; Wang, C.; Zhang, X.X.; Wu, J.H.; Ma, Z.L.; Dou, S.; Wang, S.Y. Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Electrochim. Acta 2015, 174, 297–301. [Google Scholar] [CrossRef]
- Chen, H.L.; Yu, Z.B.; Jiang, R.H.; Huang, J.; Hou, Y.P.; Zhang, Y.Q.; Zhu, H.X.; Wang, B.; Wang, M.; Tang, W.J. Sulfur defect rich Mo-Ni3S2 QDs assisted by O–C=O chemical bonding for an efficient electrocatalytic overall water splitting. Nanoscale 2021, 13, 6644–6653. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.Q.; Kong, Y.; Tan, H.; Duan, H.L.; Li, N.; Tang, B.; Wang, Y.; Feng, S.H.; Lv, L.Y.; Wang, C.; et al. Operando Identification of Active Species and Intermediates on Sulfide Interfaced by Fe3O4 for Ultrastable Alkaline Oxygen Evolution at Large Current Density. ACS Catal. 2022, 12, 4318–4326. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Chen, Q.; Chen, Q.X.; Wang, P.; Wang, J.X.; Guo, C.; Qiu, X.Y.; Han, X.; Hao, J.H. Interface enables faster surface reconstruction in a heterostructured Co–Ni–S electrocatalyst towards efficient urea oxidation. J. Mater. Chem. A 2022, 10, 24137–24146. [Google Scholar] [CrossRef]
- Gao, W.K.; Qin, J.F.; Wang, K.; Yan, K.L.; Liu, Z.Z.; Lin, J.H.; Chai, Y.M.; Liu, C.G.; Dong, B. Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction. Appl. Surf. Sci. 2018, 454, 46–53. [Google Scholar] [CrossRef]
- Wu, Z.X.; Wu, H.B.; Niu, T.F.; Wang, S.; Fu, G.T.; Jin, W.; Ma, T.Y. Sulfurated Metal−Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn−Air Battery. ACS Sustain. Chem. Eng. 2020, 8, 9226–9234. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, Y.; Zhu, T.Y.; Wang, Y.; Cui, J.W.; Wu, J.J.; Xu, H.; Shu, X.; Qin, Y.Q.; Zheng, H.M.; et al. 3D Coral-Like Ni3S2 on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 31330–31339. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.Y.; Zhu, Q.; Sun, Y.; Zhang, Y.; Jiang, Y.L.; Deng, S.Q.; Zhang, W.; Huang, K.K.; Feng, S.H. Phase-Reconfiguration-Induced NiS/NiFe2O4 Composite for Performance-Enhanced Zinc−Air Batteries. Adv. Mater. 2022, 34, 2110172. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gu, C.J.; Zhao, Q.; Zhou, G.Y.; Xu, L.; Pang, H. Reactive template-engaged synthesis of Ni-doped Co3S4 hollow and porous nanospheres with optimal electronic modulation toward high efficiency electrochemical oxygen evolution. Inorg. Chem. Front. 2022, 9, 3924–3932. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.Z.; Wang, Z.; Kong, F.Y.; Tsegazab, Y.; Lv, W.X.; Wang, W. Ni3S2-Co9S8 heterostructure nanowires supported on Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2020, 526, 146753. [Google Scholar] [CrossRef]
- Yu, X.; Xu, S.R.; Liu, X.; Cheng, X.H.; Du, Y.S.; Wu, Q. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2021, 878, 160388. [Google Scholar] [CrossRef]
- Li, J.W.; Xu, P.M.; Zhou, R.F.; Li, R.C.; Qiu, L.J.; Jiang, S.P.; Yuan, D.S. Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta 2019, 299, 152–162. [Google Scholar] [CrossRef]
- Si, F.Y.; Tang, C.Y.; Gao, Q.Z.; Peng, F.; Zhang, S.S.; Fang, Y.P.; Yang, S.Y. Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. J. Mater. Chem. A 2020, 8, 3083–3096. [Google Scholar] [CrossRef]
- Liu, F.; Guo, X.Z.; Hou, Y.; Wang, F.; Zou, C.; Yang, H. Hydrothermal combined with electrodepositionconstruction of a stable Co9S8/Ni3S2@NiFe-LDH heterostructure electrocatalyst for overall water splitting. Sustain. Energy Fuels 2021, 5, 1429–1438. [Google Scholar] [CrossRef]
Catalysts | Overpotential (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|
Fe-Co9S8 NM/NF | η10 = 270 | 70.0 | [55] |
Ni–Co-S/NSC | η10 = 309 | 87.0 | [56] |
3D Ni3S2/NF-4 | η10 = 242 | 76.0 | [57] |
NiS/NiFe2O4 | η10 = 230 | 88.0 | [58] |
Ni–Co3S4-2 nanospheres | η10 = 298 | 90.5 | [59] |
Ni3S2–Co9S8/NF | η20 = 294 | 80.0 | [60] |
NiCo2S4 | η10 = 260 | 55.0 | [61] |
Co9S8 NTs/Ni | η50 = 394 | 136.4 | [62] |
Co9S8–Ni3S2/NF-0.6 | η10 = 224 η10 = 233 η20 = 292 η50 = 355 | 116.75 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, Y.; Zhang, Y.; Liu, Y.; Li, S.; Zhou, Y.; Lin, X.; Dong, Z.; Zhang, R.; Zhang, J.; Zhang, D. MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction. Batteries 2023, 9, 46. https://doi.org/10.3390/batteries9010046
Bu Y, Zhang Y, Liu Y, Li S, Zhou Y, Lin X, Dong Z, Zhang R, Zhang J, Zhang D. MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction. Batteries. 2023; 9(1):46. https://doi.org/10.3390/batteries9010046
Chicago/Turabian StyleBu, Yingping, Yawen Zhang, Yingying Liu, Simin Li, Yanlin Zhou, Xuefen Lin, Zicong Dong, Renchun Zhang, Jingchao Zhang, and Daojun Zhang. 2023. "MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction" Batteries 9, no. 1: 46. https://doi.org/10.3390/batteries9010046
APA StyleBu, Y., Zhang, Y., Liu, Y., Li, S., Zhou, Y., Lin, X., Dong, Z., Zhang, R., Zhang, J., & Zhang, D. (2023). MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction. Batteries, 9(1), 46. https://doi.org/10.3390/batteries9010046