An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries
Abstract
:1. Introduction
2. Challenges of Zn Anodes
2.1. Dendrite Formation
2.2. Hydrogen Evolution Reaction
2.3. Corrosion
3. Improvement Strategies towards High-Performance Zn Anode
3.1. Surface Modification
3.1.1. Carbon-Based Materials
3.1.2. Metal-Based Materials
Metal Oxide and Sulfide Materials
Inorganic Compounds
Others
Metal NPs | Overpotential | Performance | Cycled Life | Ref |
---|---|---|---|---|
Au | ~100 mV | 0.25 mA cm−2–0.05 mAh cm−2 | 2000 h | [90] |
Cu | ~30 mV | 1 mA cm−2–0.5 mAh cm−2 | 1500 h | [91] |
Sn | ~25 mV | 1 mA cm−2–0.5 mAh cm−2 | 500 h | [92] |
In | ~54 mV | 0.2 mA cm−2–0.2 mAh cm−2 | 1500 h | [93] |
In | ~15 mV | 0.25 mA cm−2–0.05 mAh cm−2 | 1400 h | [94] |
Cu | ~50 mV | 1 mA cm−2–1 mAh cm−2 | 5000 h | [95] |
Ag | ~25 mV | 0.25 mA cm−2–0.25 mAh cm−2 | 1500 h | [96] |
Ridge-like Zn | ~52 mV | 1 mA cm−2–0.2 mAh cm−2 | 400 h | [97] |
MXene | 47 mV | 0.2 mA cm−2–0.2 mAh cm−2 | >800 h | [98] |
MXene | 75 mV | 1 mA cm−2–1 mAh cm−2 | 300 h | [100] |
3.1.3. Metal-Organic Framework (MOF)
Material | Overpotential | Performance | Cycled Life | Ref |
---|---|---|---|---|
ZnS | 98 mV | 2 mA cm−2–2 mAh cm−2 | 1100 h | [39] |
Al2O3 | ~200 mV | 1 mA cm−2–0.5 mAh cm−2 | 300 h | [77] |
HfO2 | ~40 mV | 0.4 mA cm−2–0.1 mAh cm−2 | 150 h | [78] |
Sc2O3 | ~40 mV | 0.5 mA cm−2–0.5 mAh cm−2 | 280 h | [79] |
TiO2 | 50 mV | 0.4 mA cm−2–0.2 mAh cm−2 | 160 h | [80] |
ZrO2 | 24 mV | 0.25 mA cm−2–0.125 mAh cm−2 | 3700 h | [81] |
MoS2 | 120 mV | 2.5 mA cm−2–0.416 mAh cm−2 | 160 h | [82] |
CaCO3 | ~100 mV | 0.25 mA cm−2–0.05 mAh cm−2 | 836 h | [84] |
NaTi2(PO4)3 | 17.4 mV | 0.4 mA cm−2–0.2 mAh cm−2 | 200 h | [85] |
Kaolin | ~100 mV | 4.4 mA cm−2–1.1 mAh cm−2 | 800 h | [86] |
ZnP | 31 mV | 2 mA cm−2–1 mAh cm−2 | 1100 h | [87] |
Zeolite | 60 mV | 1 mA cm−2–0.5 mAh cm−2 | 1200 h | [88] |
Zn3(PO4)2 | ~30 mV | 1 mA cm−2–0.5 mAh cm−2 | 3000 h | [89] |
MOF | ~60 mV | 0.5 mA cm−2–0.5 mAh cm−2 | 3000 h | [102] |
ZIF-8 | ~25 mV | 2 mA cm−2–1 mAh cm−2 | 1300 h | [103] |
ZIF-8 | 105 mV | 0.25 mA cm−2–0.05 mAh cm−2 | 170 h | [105] |
UIO-66 | ~50 mV | 1 mA cm−2–0.5 mAh cm−2 | 500 h | [106] |
3.1.4. Polymer
Material | Overpotential | Performance | Cycled Life | Ref |
---|---|---|---|---|
Polyimide | ~25 mV | 4 mA cm−2–2 mAh cm−2 | 300 h | [46] |
PVB | ~80 mV | 0.5 mA cm−2–0.5 mAh cm−2 | 2200 h | [60] |
Polyamide | ~100 mV | 0.5 mA cm−2–0.25 mAh cm−2 | 8000 h | [61] |
PVDF | ~60 mV | 0.25 mA cm−2–0.05 mAh cm−2 | 2000 h | [107] |
PAN | ~75 mV | 1 mA cm−2–1mAh cm−2 | 1150 h | [108] |
502-glue | ~ 50 mV | 2 mA cm−2–1 mAh cm−2 | 400 h | [109] |
PVA | ~125 mV | 0.25 mA cm−2–0.25 mAh cm−2 | 5000 h | [110] |
PFPE | ~40 mV | 1 mA cm−2–1 mAh cm−2 | 800 h | [111] |
PPy | ~25 mV | 2 mA cm−2–1 mAh cm−2 | 600 h | [112] |
SPEEK | ~40 mV | 1 mA cm−2–1 mAh cm−2 | 500 h | [113] |
3.2. Structural Design Optimization
3.2.1. Three-Dimensional (3D) Network Hosted Zn Anodes
3.2.2. Zn Alloying
3.3. Electrolyte Optimization
3.3.1. Zinc Salts and Their Concentration
3.3.2. Electrolyte Additives
Inorganic Additives
Organic Additives
Types | Additives | Effects | Ref |
---|---|---|---|
Inorganics | MnSO4 | Suppress Zn dendrites and dissolution of Mn2+ ions from the MnO2 cathode | [152] |
MgSO4 | Inhibit the HER Enable a uniform nucleation and deposition of Zn Suppress the growth of Zn dendrite | [159] | |
Na2SO4 | Limit the dissolution of cathode Restrict the growth of dendrites on anode | [161] | |
LiCl | Inhibit the formation of dendrites Reduce side reactions | [162] | |
MXene | Regulate the uniform nucleation of Zn2+ Suppress Zn dendrites growth Relieve the side corrosions | [163] | |
NMO | Suppress the formation of protrusions on Zn anodes | [164] | |
I3− | Passivate the growth hotspots of Zn dendrites Reduce HER and corrosion rate | [166] | |
GO | Promote the uniform distribution of electric field Reduce the nucleation overpotential of Zn2+ Eliminate Zn dendrites | [167] | |
SeO2 | Impede dendrite formation Inhibit the parasitic reactions | [168] | |
Zn(H2PO4)2 | Provide dendrite-free Zn deposition Restrain the side reactions | [169] | |
Zn(OH)2 | Suppress parasitic reactions and dendrite growth Promote the reaction kinetics | [170] | |
La(NO3)3 | Favor dense metallic Zn deposits Regulate the charge distribution at electrode/electrolyte interface | [171] | |
Organics | Glucose | Restrain side reactions Suppress the growth of Zn dendrite | [36] |
PAM | Inhibit the dendrite growth Induce the uniform Zn deposition Homogeneously distribute Zn on the surface of the electrode | [172] | |
PEO | Promote dendrite-free homogeneous Zn deposition Eliminate H2 generation | [176] | |
PVP | Render less corrosion and more uniform Zn deposition on the anode Modulate the deposition of cathode without aggregations | [179] | |
PEG | Inhibit Zn dendrites and side reactions | [180] | |
SDS | Suppress the evolution of hydrogen and oxygen Suppress the decomposition of water Inhibit the corrosion of Zn | [183] | |
TPAH | Inhibit the Zn dendrite growth | [185] | |
TMBA+ | Inhibit side reactions Regulate Zn uniform distribution | [187] | |
Acetonitrile | Accumulate on the Zn surface to shield water molecules Suppress the HER | [189] | |
PASP | Promote dendrite-free Zn deposition Resist the side reactions | [193] | |
Silk peptide | Suppress dendrite formation Regulate solvation and interface | [194] | |
Vanillin | Promote dendrite-free Zn deposition Suppress HER and by-products | [197] |
3.3.3. Other Electrolytes
3.4. Design of Separators
4. Summary, Challenges, and Perspectives
- (1)
- Surface modification with a variety of coating materials that can tune the interaction of Zn with the electrolyte and maintain homogeneous Zn deposition is crucial to optimize the electrode/electrolyte interfacial reactions. However, a high interface impedance may be induced by the surface modification layer, impairing the rate capability. Hence, future efforts should be devoted to developing a surface modification layer with fast ion transport channels and high affinity to Zn anodes. Ideally, the surface modification layer should have the minimum loading and function effectively at both low and high current densities.
- (2)
- Some conflicting claims were found in the reports about the design principle of the interphase layer of Zn anodes. For example, the roles of surface wettability and zincophilicity in regulating Zn electrochemistry remain elusive and controversial. Some reports claimed that the interphase hydrophilicity is beneficial to the Zn plating/stripping, whereas other reports indicate the interfacial hydrophobicity is favorable. Furthermore, it is still debated whether high or low zincophilicity is beneficial to the plating and stripping of Zn. Therefore, in-depth mechanistic insights into the effects of interphase properties on Zn electrochemistry should be uncovered.
- (3)
- An in-depth understanding of the zinc ion diffusion through the artificial coating interfaces or in situ formed solid electrolyte interphases on Zn anodes is needed.
- (4)
- The development of high-performance and inexpensive Zn anodes with excellent structural integrity is highly demanded to promote the widespread application of ZIBs. Alloying with Zn is a promising method for the large-scale preparation of stable anodes. The alkaline Zn batteries have employed the Zn alloyed with some heavy metals. To date, only a few zinc alloy anodes have been investigated for mild ZIBs. A wider range of alloy systems with varied compositions should be considered in the future through the predication based on thermodynamic phase diagrams and theoretical computations coupled with experimental results to optimize functional alloying parameters and phase information.
- (5)
- A promising way to substantially improve Zn anodes is to optimize the electrolyte formulation composed of solvents, salt concentration, and additives. In the meantime, it is a key challenge how to solve the high corrosion of Zn anodes and suppress other side effects with the appropriate formulation. When an electrolyte formulation is designed, the bond strength between Zn2+ ions, various anions, and water molecules should be critically considered. The drying-out of the electrolytes in long-term cycling must be avoided. Moreover, some electrolyte additives may cause sluggish ion or electron transport, and high polarization of the battery system. Especially, the effects of electrolyte formulation and additives on the ionic diffusion into the positive electrodes and the possible electrochemical oxidation of added organic molecules (e.g., glucose) upon high potentials should also be considered.
- (6)
- A well-balanced combination of multiple strategies and tactics should be explored to improve the comprehensive performance of ZIBs. Since the anode interfacial issues are interconnected, various strategies can be integrated to synergistically address those issues. Some electrolyte additives can destroy the solvation structure by coordinating with Zn2+ ions and adsorb on the metal surface to suppress the H+ adsorption and HER and regulate Zn nucleation and growth. Structured anodes can be combined with the use of electrolyte additives or gel electrolytes to achieve a stable anode interface. Moreover, by incorporating metal or metal oxide particles into the modified layers or structured anodes, it is possible to design composite anodes to boost Zn deposition.
- (7)
- A gap usually exists between the anode performance and battery performance, suggesting the observed long-term cycling stability in symmetric Zn cells may not directly translate to the cyclability of full cells and stack systems. Therefore, the effectiveness of developed strategies should also be assessed by validating the performance of the whole battery system.
- (8)
- It is necessary to consider the costs and high gravimetric energy density of ZIBs in the practical application. A trade-off between economic cost, fabrication process, and electrochemical performance should be established to ensure competitiveness. In this scenario, the mass loading of Zn and utilization are crucial. Most of the reported aqueous ZIBs contain excessive Zn, whereas most Zn does not participate in the electrochemical reaction. This will reduce the Zn utilization and high gravimetric energy density of whole cells. Increasing the Zn plate utilization and employing Zn powder can enhance the gravimetric energy density of ZIBs. However, it is a formidable challenge to address the issues of dendrite growth, HER, and Zn corrosion when the Zn loading is low or high-surface-area Zn powder is used. The use of high-concentration electrolytes can increase the cost and reduce the rate of performance. Note that aqueous ZIBs feature low cost, high safety, and environmental friendliness, making them ideal for long-term usage. However, much research focuses on developing dendrite-free anodes with less consideration of the cost and scalability that are more relevant to practical production and application. Some methods involve the use of expensive and harmful raw materials, require complex procedures and harsh conditions, and have low yields, which significantly limits their viability in industrial applications. Therefore, the cost and benefits should be thoroughly weighed for the future development of viable Zn anodes.
- (9)
- Most of the reported testing protocols are proper to fundamentally evaluate the Zn anode but inappropriate for assessing the viability of entire batteries for practical application. For example, the long-term cycling performance of full ZIBs are evaluated at high rates, as the cells seemingly show better stability under high rates. However, such good cycling stability is misleading for practical energy storage applications. To bridge the gap between academic research and practical application, rigorous testing protocols towards pouch cells and stack systems should be established beyond lab-scale coin cells, considering the high mass loadings, proper electrolyte dosage (rather than flooded electrolytes), large depth of discharge, and proper negative to positive electrode capacity ratio (N/P ratio) for high utilization of Zn anodes and electrolytes to meet the industrial requirements. Future work may focus on the translation of lab-scale innovation to industrial production and transforming the material-level performance assessment into the device and system-level metrics.
- (10)
- Rechargeable batteries are an excellent option for smart grids, electric vehicles, and consumer electronics requiring excellent energy storage. Despite their merits, the steady supply of electricity, efficient utilization, operation and safety management, and effective control of these battery systems have always been concerns for many applications. For Zn-ion batteries, their capacity fade, cycling lifetime, possible cell deformation, and release of gases in the practical operation must be rigorously monitored and controlled. Hence, the battery management system (BMS) plays a vital role in evaluating and monitoring battery usage and health. There are several functions performed by a BMS, including (i) estimation of battery condition, (ii) battery cell balance, (iii) pack charging/discharging control, (iv) thermal management, (v) fault prognosis, and (vi) health diagnosis. However, the complexity of internal battery chemistry and difficulty in precisely measuring individual parameters make it challenging to accurately evaluate the battery’s state of health. Additionally, battery modeling can simulate the electrochemical behavior of batteries. In terms of hardware, a sensor can monitor and provide feedback on various battery parameters to establish appropriate models and estimate battery states. To achieve power conversion and information interaction, the controllers will process battery information and issue control instructions. The BMS may also embrace various emerging technologies, such as artificial intelligence (AI), cloud computing (CC), and blockchain technology. Thus, it is desirable to have precise battery models that can be easily computed in an advanced battery management system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schon, T.B.; McAllister, B.T.; Li, P.F.; Seferos, D.S. The Rise of Organic Electrode Materials for Energy Storage. Chem. Soc. Rev. 2016, 45, 6345–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, H.; Xing, Y.; Pecht, M.; Züger, B.-J.; Khare, N.; Vezzini, A. Safety Requirements for Transportation of Lithium Batteries. Energies 2017, 10, 793. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, W.; Chen, X.; Liu, X. Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Adv. Funct. Mater. 2020, 30, 2004650. [Google Scholar] [CrossRef]
- Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochem. Energy Rev. 2022, 5, 14. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety Issues and Mechanisms of Lithium-Ion Battery Cell upon Mechanical Abusive Loading: A Review. Energy Storage Mater. 2020, 24, 85–112. [Google Scholar] [CrossRef]
- Li, W.; Yin, Y.X.; Xin, S.; Song, W.G.; Guo, Y.G. Low-Cost and Large-Scale Synthesis of Alkaline Earth Metal Germanate Nanowires as a New Class of Lithium Ion Battery Anode Material. Energy Environ. Sci. 2012, 5, 8007–8013. [Google Scholar] [CrossRef]
- Pang, P.; Wang, Z.; Tan, X.; Deng, Y.; Nan, J.; Xing, Z.; Li, H. LiCoO2@LiNi0.45Al0.05Mn0.5O2 as High-Voltage Lithium-Ion Battery Cathode Materials with Improved Cycling Performance and Thermal Stability. Electrochim. Acta 2019, 327, 135018. [Google Scholar] [CrossRef]
- Pang, P.; Pang, P.; Wang, Z.; Deng, Y.; Nan, J.; Xing, Z.; Li, H. Delayed Phase Transition and Improved Cycling/Thermal Stability by Spinel LiNi0.5Mn1.5O4 Modification for LiCoO2 Cathode at High Voltages. ACS Appl. Mater. Interfaces 2020, 12, 27339–27349. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A Review of Safety Strategies of a Li-Ion Battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Ao, H.; Zhao, Y.; Zhou, J.; Cai, W.; Zhang, X.; Zhu, Y.; Qian, Y. Rechargeable Aqueous Hybrid Ion Batteries: Developments and Prospects. J. Mater. Chem. A 2019, 7, 18708–18734. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.; Park, K.Y.; Kim, H.; Kim, S.W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 2014, 114, 11788–11827. [Google Scholar] [CrossRef] [PubMed]
- Monroe, D. Building a Better Battery. MRS Bull. 2020, 45, 246–247. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Borodin, O.; Ding, M.S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Edison, N.; Liang, Y.; Sun, W. Hybrid Aqueous/Non-Aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule 2018, 2, 927–937. [Google Scholar] [CrossRef] [Green Version]
- Posada, J.O.G.; Rennie, A.J.R.; Villar, S.P.; Martins, V.L.; Marinaccio, J.; Barnes, A.; Glover, C.F.; Worsley, D.A.; Hall, P.J. Aqueous Batteries as Grid Scale Energy Storage Solutions. Renew. Sustain. Energy Rev. 2017, 68, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Wang, S.; Yu, A.; Chen, Z. Aqueous Intercalation-Type Electrode Materials for Grid-Level Energy Storage: Beyond the Limits of Lithium and Sodium. Nano Energy 2018, 50, 229–244. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Chem. Eur. J. 2019, 25, 14480–14494. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chem. Soc. Rev. 2020, 49, 180–232. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, C.; Li, W.; Li, P.; Qu, J.; Song, W. Low-Cost Synthesis of Robust Anatase Polyhedral Structures with a Preponderance of Exposed {001} Facets for Enhanced Photoactivities. Nano Res. 2012, 5, 434–442. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.Z. Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications. Sci. Adv. 2020, 6, eaba4098. [Google Scholar] [CrossRef]
- Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 2019, 3, 1800272. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C. Advanced Rechargeable Zinc-Based Batteries: Recent Progress and Future Perspectives. Nano Energy 2019, 62, 550–587. [Google Scholar] [CrossRef]
- Blanc, L.E.; Kundu, D.; Nazar, L.F. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule 2020, 4, 771–799. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. Strategies of Regulating Zn2+ Solvation Structures for Dendrite-Free and Side Reaction-Suppressed Zinc-Ion Batteries. Energy Environ. Sci. 2022, 15, 499–528. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, G.; Guo, Y.; Liu, Z.; Yan, B.; Wang, D.; Huang, Z.; Li, X.; Fan, J.; Zhi, C. Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In-Service Batteries. Adv. Mater. 2019, 31, 1903778. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zeng, X.; Li, D.; Mao, J.; Guo, Z. Deeply Understanding the Zn Anode Behaviour and Corresponding Improvement Strategies in Different Aqueous Zn-Based Batteries. Energy Environ. Sci. 2020, 13, 3917–3949. [Google Scholar] [CrossRef]
- Jia, X.; Liu, C.; Neale, Z.G.; Yang, J.; Cao, G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem. Rev. 2020, 120, 7795–7866. [Google Scholar] [CrossRef]
- Tao, F.; Liu, Y.; Ren, X.; Wang, J.; Zhou, Y.; Miao, Y.; Ren, F.; Wei, S.; Ma, J. Different Surface Modification Methods and Coating Materials of Zinc Metal Anode. J. Energy Chem. 2022, 66, 397–412. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Z.; Ming, F.; Zeng, Y.; Wei, B.; Jiang, Q.; Qi, Z.; Wang, Z.; Liang, H. Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. Small 2022, 18, 2200006. [Google Scholar] [CrossRef]
- Qin, R.; Wang, Y.; Yao, L.; Yang, L.; Zhao, Q.; Ding, S.; Liu, L.; Pan, F. Progress in Interface Structure and Modification of Zinc Anode for Aqueous Batteries. Nano Energy 2022, 98, 107333. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, C.; Zhang, H.; Li, X. Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects. ACS Energy Lett. 2021, 6, 2765–2785. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Li, T.C.; Fang, D.; Zhang, J.; Pam, M.E.; Leong, Z.Y.; Yu, J.; Li, X.L.; Yan, D.; Yang, H.Y. Recent Progress in Aqueous Zinc-Ion Batteries: A Deep Insight into Zinc Metal Anodes. J. Mater. Chem. A 2021, 9, 6013–6028. [Google Scholar] [CrossRef]
- Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003065. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C. Dendrites in Zn-Based Batteries. Adv. Mater. 2020, 32, e2001854. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Ma, L.; Zhou, W.; Qiu, M.; Wang, Z.; Chao, D.; Mai, W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive. Angew. Chem. Int. Ed. 2021, 60, 18247–18255. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, H.; Liu, Z.; Tang, Z.; Liang, G.; Mo, F.; Yang, Q.; Ma, L.; Zhi, C. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn–MnO2 Battery with Superior Shear Resistance. Small 2018, 14, 1803978. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Yang, T.; Yu, L.; Wei, N.; Tian, Z.; Cai, J.; Lv, J.; Shao, Y.; Rümmeli, M.H. Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Adv. Mater. 2020, 32, 2003425. [Google Scholar] [CrossRef]
- Hao, J.; Li, B.; Li, X.; Zeng, X.; Zhang, S.; Yang, F.; Liu, S.; Li, D.; Wu, C.; Guo, Z. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries. Adv. Mater. 2020, 32, 2003021. [Google Scholar] [CrossRef]
- Kang, Z.; Wu, C.; Dong, L.; Liu, W.; Mou, J.; Zhang, J.; Chang, Z.; Jiang, B.; Wang, G.; Kang, F. 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 3364–3371. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, M.; Wu, K.; Yu, F.; Wang, G.; Xu, G.; Wu, M.; Liu, H.-K.; Dou, S.-X.; Wu, C. An In-depth Insight of a Highly Reversibility and Dendrite-free Zn Metal Anode in A Hybrid Electrolyte. J. Mater. Chem. A 2021, 9, 4253. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Lett. 2022, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc Dendrite Growth and Inhibition Strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Yufit, V.; Tariq, F.; Eastwood, D.S.; Biton, M.; Wu, B.; Lee, P.D.; Brandon, N.P. Operando Visualization and Multi-Scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries. Joule 2019, 3, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Wang, C.; Pei, A.; Lopez, J.; Shi, F.; Chen, Z.; Sendek, A.D.; Lee, H.W.; Lu, Z.; Schneider, H. High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Lett. 2016, 1, 1247–1255. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, J.; Lu, Q.; Dong, H.; Karnaushenko, D.D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H.; Qu, Z. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery. Adv. Mater. 2021, 33, 2007497. [Google Scholar] [CrossRef]
- Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes. Adv. Mater. 2021, 33, 2007406. [Google Scholar] [CrossRef]
- Cao, X.; Ren, X.; Zou, L.; Engelhard, M.H.; Huang, W.; Wang, H.; Matthews, B.E.; Lee, H.; Niu, C.; Arey, B.W. Monolithic Solid–Electrolyte Interphases Formed in Fluorinated Orthoformate-Based Electrolytes Minimize Li Depletion and Pulverization. Nat. Energy 2019, 4, 796–805. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, W.W.; Li, Y.J.; Wu, Q.H.; Tang, S.; Yan, J.W.; Zheng, M.S.; Wu, D.Y.; Fan, C.H.; Hu, W.Q. Designable Ultra-Smooth Ultra-Thin Solid-Electrolyte Interphases of Three Alkali Metal Anodes. Nat. Commun. 2018, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Chazalviel, J.-N. Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits. Phys. Rev. A 1990, 42, 7355. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, Q.; Tang, T.; Yin, J.; Quilty, C.D.; Renderos, G.D.; Liu, X.; Deng, Y.; Wang, L.; Bock, D.C. Reversible Epitaxial Electrodeposition of Metals in Battery Anodes. Science 2019, 366, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tian, H.; Ma, L.; Wang, Y.; Liu, X.; Gao, X. Low-Temperature Water Electrolysis: Fundamentals, Progress, and New Strategies. Mater. Adv. 2022, 3, 5598–5644. [Google Scholar] [CrossRef]
- Ali, A.; Long, F.; Shen, P.K. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. Electrochem. Energy Rev. 2022, 5, 1. [Google Scholar] [CrossRef]
- Li, C.; Xie, X.; Liang, S.; Zhou, J. Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-Ion Batteries. Energy Environ. Mater. 2020, 3, 146–159. [Google Scholar] [CrossRef]
- Verma, J.; Goel, S. Cost-Effective Electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. Int. J. Hydrog. Energy 2022, 47, 38964–38982. [Google Scholar] [CrossRef]
- Zhao, J.; Bao, K.; Xie, M.; Wei, D.; Yang, K.; Zhang, X.; Zhang, C.; Wang, Z.; Yang, X. Two-Dimensional Ultrathin Networked CoP Derived from Co(OH)2 as Efficient Electrocatalyst for Hydrogen Evolution. Adv. Compos. Hybrid Mater. 2022, 5, 2421–2428. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, H.; Yang, Y.; Yuan, M.; Li, C.; He, H.; Chan, T.-S.; Yan, D.; Ma, S.; Zapol, P. MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction. Chem. Mater. 2022, 34, 798–808. [Google Scholar] [CrossRef]
- Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T.J.; Hanson, T.B.; Liu, T.L.; Sun, Y. Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs. Chem 2018, 4, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xiong, D.; Gao, X.; Song, W.G.; Xia, F.; Liu, L. Self-Supported Co-Ni-P Ternary Nanowire Electrodes for Highly Efficient and Stable Electrocatalytic Hydrogen Evolution in Acidic Solution. Catal. Today 2017, 287, 122–129. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-Inspired Interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Yang, W.; Chen, B.; Zhao, Z.; Qiu, H.; Dong, S.; Zhou, X.; Cui, G.; Chen, L. “Water-in-Deep Eutectic Solvent” Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries. Nano Energy 2019, 57, 625–634. [Google Scholar] [CrossRef]
- Bayaguud, A.; Fu, Y.; Zhu, C. Interfacial Parasitic Reactions of Zinc Anodes in Zinc Ion Batteries: Underestimated Corrosion and Hydrogen Evolution Reactions and Their Suppression Strategies. J. Energy Chem. 2022, 64, 246–262. [Google Scholar] [CrossRef]
- Fitz, O.; Bischoff, C.; Bauer, M.; Gentischer, H.; Birke, K.P.; Henning, H.M.; Biro, D. Electrolyte Study within Operando pH Tracking Providing Insight into the Reaction Mechanism of Aqueous Acidic Zn//MnO2 Batteries. ChemElectroChem 2021, 8, 3553–3566. [Google Scholar] [CrossRef]
- Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M. Preparation and Corrosion Resistance of Pulse Electrodeposited Zn and Zn-SiC Nanocomposite Coatings. Appl. Surf. Sci. 2014, 300, 1–7. [Google Scholar] [CrossRef]
- Xie, C.; Li, Y.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Issues and Solutions toward Zinc Anode in Aqueous Zinc-Ion Batteries: A Mini Review. Carbon Energy 2020, 2, 540–560. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Zhou, M.; Zhan, H.; Cheng, S.; Jiang, K. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 22059–22066. [Google Scholar] [CrossRef]
- Du, Y.; Liu, C.; Liu, Y.; Han, Q.; Chi, X.; Liu, Y. Carbon Fiber Micron Film Guided Uniform Plating/Stripping of Metals: A Universal Approach for Highly Stable Metal Batteries. Electrochim. Acta 2020, 339, 135867. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Chen, P.; Wu, Y.; Yang, H.; Ding, H.; Zhang, Y.; Wang, Z.; Du, X.; Liu, N. Graphene Oxide-Modified Zinc Anode for Rechargeable Aqueous Batteries. Chem. Eng. Sci. 2019, 194, 142–147. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, W.; Huang, A.; Chen, M.; Chen, J.; Tian, Q.; Xu, J. Modifying the Zn Anode with Carbon Black Coating and Nanofibrillated Cellulose Binder: A Strategy to Realize Dendrite-Free Zn-MnO2 Batteries. J. Colloid Interface Sci. 2020, 577, 256–264. [Google Scholar] [CrossRef]
- Li, M.; He, Q.; Li, Z.; Li, Q.; Zhang, Y.; Meng, J.; Liu, X.; Li, S.; Wu, B.; Chen, L. A Novel Dendrite-Free Mn2+/Zn2+ Hybrid Battery with 2.3 V Voltage Window and 11000-Cycle Lifespan. Adv. Energy Mater. 2019, 9, 1901469. [Google Scholar] [CrossRef]
- Qiu, M.; Wang, D.; Tawiah, B.; Jia, H.; Fei, B.; Fu, S. Constructing PEDOT:PSS/Graphene Sheet Nanofluidic Channels to Achieve Dendrite-Free Zn Anode. Compos. B Eng. 2021, 215, 108798. [Google Scholar] [CrossRef]
- Xia, A.; Pu, X.; Tao, Y.; Liu, H.; Wang, Y. Graphene Oxide Spontaneous Reduction and Self-Assembly on the Zinc Metal Surface Enabling a Dendrite-Free Anode for Long-Life Zinc Rechargeable Aqueous Batteries. Appl. Surf. Sci. 2019, 481, 852–859. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J.G.; Liu, X.; Wei, B. Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Appl. Mater. Interfaces 2018, 10, 25446–25453. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Huang, R.; Wei, G.; Liu, A.; Li, L.; Chen, R. Ultrathin Surface Coating of Nitrogen-Doped Graphene Enables Stable Zinc Anodes for Aqueous Zin-Ion Batteries. Adv. Mater. 2021, 33, 2101649. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yang, W.; Yang, W.; Tian, H.; Huang, Y.; Wang, X.; Xu, C.; Wang, C.; Kang, F.; Wang, G. Flexible and Conductive Scaffold-Stabilized Zinc Metal Anodes for Ultralong-Life Zinc-Ion Batteries and Zinc-Ion Hybrid Capacitors. Chem. Eng. J. 2020, 384, 123355. [Google Scholar] [CrossRef]
- Dai, L.; Wang, T.; Jin, B.; Liu, N.; Niu, Y.; Meng, W.; Gao, Z.; Wu, X.; Wang, L.; He, Z. γ-Al2O3 Coating Layer Confining Zinc Dendrite Growth for High Stability Aqueous Rechargeable Zinc-Ion Batteries. Surf. Coat. Technol. 2021, 427, 127813. [Google Scholar] [CrossRef]
- Li, B.; Xue, J.; Han, C.; Liu, N.; Ma, K.; Zhang, R.; Wu, X.; Dai, L.; Wang, L.; He, Z. A Hafnium Oxide-Coated Dendrite-Free Zinc Anode for Rechargeable Aqueous Zinc-Ion Batteries. J. Colloid Interface Sci. 2021, 599, 467–475. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, S.; Fang, G.; Sun, H.; Cao, X.; Zhou, J.; Pan, A.; Liang, S. Suppressing By-Product via Stratified Adsorption Effect to Assist Highly Reversible Zinc Anode in Aqueous Electrolyte. J. Energy Chem. 2021, 55, 549–556. [Google Scholar] [CrossRef]
- Li, B.; Xue, J.; Lv, X.; Zhang, R.; Ma, K.; Wu, X.; Dai, L.; Wang, L.; He, Z. A Facile Coating Strategy for High Stability Aqueous Zinc Ion Batteries: Porous Rutile Nano-TiO2 Coating on Zinc Anode. Surf. Coat. Technol. 2021, 421, 127367. [Google Scholar] [CrossRef]
- Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries. Adv. Funct. Mater. 2020, 30, 1908528. [Google Scholar] [CrossRef]
- Bhoyate, S.; Mhin, S.; Mhin, S.; Jeon, J.E.; Park, K.; Kim, J.; Choi, W.; Choi, W. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liang, S.; Gao, J.; Guo, S.; Guo, J.; Wang, C.; Xu, G.; Wu, X.; Chen, G.; Zhou, J. Manipulating the Ion-Transfer Kinetics and Interface Stability for High-Performance Zinc Metal Anodes. Energy Environ. Sci. 2020, 13, 503–510. [Google Scholar] [CrossRef]
- Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Adv. Energy Mater. 2018, 8, 1801090. [Google Scholar] [CrossRef]
- Li, B.; Jin, B.; Zhang, R.; Ma, K.; Wu, X.; Dai, L.; Wang, L.; He, Z. Structural Design and Interfacial Characteristics Endow NaTi2(PO4)3 Coated Zinc Anode with High Capacity and Better Cycling Stability. Surf. Coat. Technol. 2021, 425, 127699. [Google Scholar] [CrossRef]
- Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode. Adv. Funct. Mater. 2020, 30, 2000599. [Google Scholar] [CrossRef]
- Wang, T.; Xi, Q.; Li, Y.; Fu, H.; Hua, Y.; Shankar, E.G.; Kakarla, A.K.; Yu, J.S. Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries. Adv. Sci. 2022, 9, 2200155. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, H.; Shao, G.; Wang, C.A. Realizing Highly Reversible and Deeply Rechargeable Zn Anode by Porous Zeolite Layer. J. Power Sources 2022, 540, 231659. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Lin, X.; Yang, Y.; Zhou, S.; Wang, Y.; Pan, A. Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings. Adv. Funct. Mater. 2021, 31, 2106114. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, Y.; Kang, L.; Du, W.; Gao, Y.; Sun, X.; Zhou, Y.; Li, X.; Li, H.; Jiang, F. Quasi-Isolated Au Particles as Heterogeneous Seeds to Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496. [Google Scholar] [CrossRef]
- Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically Resistant Cu–Zn/Zn Composite Anode for Long Cycling Aqueous Batteries. Energy Storage Mater. 2020, 27, 205–211. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Y.; Tong, X.; Wang, X.; Zhang, L.; Xia, X.; Tu, J. Multifunctional Tin Layer Enabled Long-Life and Stable Anode for Aqueous Zinc-Ion Batteries. Mater. Today Energy 2021, 20, 100675. [Google Scholar] [CrossRef]
- Han, D.; Wu, S.; Zhang, S.; Deng, Y.; Cui, C.; Zhang, L.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems. Small 2020, 16, 2001736. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Guan, X.; Lv, R.; Li, G.; Hu, Z.; Ren, L.; Wang, A.; Liu, X.; Luo, J. Stabilizing Zinc Metal Anodes by Artificial Solid Electrolyte Interphase through a Surface Ion-Exchanging Strategy. Chem. Eng. J. 2020, 396, 125363. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Yu, F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z.; Wu, M.; Liu, H.K.; Dou, S.X. Highly Reversible and Dendrite-Free Zn Electrodeposition Enabled by a Thin Metallic Interfacial Layer in Aqueous Batteries. Chem. Eng. J. 2021, 416, 128062. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L. Uniform and Dendrite-Free Zinc Deposition Enabled by In Situ Formed AgZn3 for the Zinc Metal Anode. J. Mater. Chem. A 2021, 9, 8452–8461. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Z.; Xiao, R.; Ou, Y.; Zhan, R.; Yuan, Z.; Sun, Y. A Chemically Polished Zinc Metal Electrode with a Ridge-like Structure for Cycle-Stable Aqueous Batteries. ACS Appl. Mater. Interfaces 2020, 12, 23028–23034. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z. Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 2861–2865. [Google Scholar] [CrossRef]
- Etman, A.S.; Halim, J.; Rosen, J. MXene-Based Zn-Ion Hybrid Supercapacitors: Effects of Anion Carriers and MXene Surface Coatings on the Capacities and Life Span. J. Energy Storage 2022, 52, 104823. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano 2019, 13, 11676–11685. [Google Scholar] [CrossRef]
- Wei, C.; Tao, Y.; An, Y.; Tian, Y.; Zhang, Y.; Feng, J.; Qian, Y. Recent Advances of Emerging 2D MXene for Stable and Dendrite-Free Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004613. [Google Scholar] [CrossRef]
- Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H. Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angew. Chem. Int. Ed. 2020, 59, 9377–9381. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, F.; Xu, W.; Zeng, Y.; He, J.; Lu, X. Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite-Free Zn Anodes. Adv. Sci. 2020, 7, 2002173. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, R.; Buyukcakir, O.; Seong, W.K.; Ruoff, R.S. Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 1904215. [Google Scholar] [CrossRef]
- Pu, X.; Jiang, B.; Wang, X.; Liu, W.; Dong, L. High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Lett. 2020, 12, 152. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051. [Google Scholar] [CrossRef]
- Hieu, L.T.; So, S.; Kim, I.T.; Hur, J. Zn Anode with Flexible β-PVDF Coating for Aqueous Zn-Ion Batteries with Long Cycle Life. Chem. Eng. J. 2021, 411, 128584. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, X.; Xia, Y.; Zhang, Y.; Fu, L.; Liu, L.; Yu, N.; Huang, Q.; Wang, B.; Hu, X. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries. Adv. Sci. 2021, 8, 2100319. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, X.; Xu, D.; Dong, P.; Chee, M.O.L.; Li, X.; Zhu, K.; Ye, M.; Shen, J. Eliminating Zn Dendrites by Commercial Cyanoacrylate Adhesive for Zinc Ion Battery. Energy Storage Mater. 2021, 36, 132–138. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Hu, S.; Akhmedov, N.G.; Reed, D.; Li, X.; Liu, X. Polyvinyl Alcohol Coating Induced Preferred Crystallographic Orientation in Aqueous Zinc Battery Anodes. Nano Energy 2022, 98, 107269. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, C.; Zhang, J.; Jiao, Y.; Li, M.; Lin, W.; Ran, L.; Clement, B.; Lyu, M.; Gentle, I. A Hydrophobic and Fluorophilic Coating Layer for Stable and Reversible Aqueous Zinc Metal Anodes. Chem. Eng. J. 2022, 446, 136607. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Pan, J.; Tian, F.; Zeng, S.; Yang, J.; Qian, Y. Polypyrrole-Controlled Plating/Stripping for Advanced Zinc Metal Anodes. Mater. Today Energy 2020, 17, 100443. [Google Scholar] [CrossRef]
- Jian, Q.; Wan, Y.; Lin, Y.; Ni, M.; Wu, M.; Zhao, T. A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Appl. Mater. Interfaces 2021, 13, 52659–52669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 13180–13191. [Google Scholar] [CrossRef] [PubMed]
- Kucinskis, G.; Bajars, G.; Kleperis, J. Graphene in Lithium Ion Battery Cathode Materials: A Review. J. Power Sources 2013, 240, 66–79. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, G.; Xu, Y.; Zhang, H.; Guo, X.; Liu, Y.; Pang, H. A New Strategy for the Controllable Growth of MOF@PBA Architectures. J. Mater. Chem. A 2019, 7, 17266–17271. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Liu, Y.; Pang, H. Exposing {001} Crystal Plane on Hexagonal Ni-MOF with Surface-Grown Cross-Linked Mesh-Structures for Electrochemical Energy Storage. Small 2019, 15, 1902463. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. Adv. Mater. 2019, 31, 1903675. [Google Scholar] [CrossRef]
- Dong, W.; Shi, J.L.; Wang, T.S.; Yin, Y.X.; Wang, C.R.; Guo, Y.G. 3D Zinc@carbon Fiber Composite Framework Anode for Aqueous Zn-MnO2 Batteries. RSC Adv. 2018, 8, 19157–19163. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, J.; Guo, Z.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. A Metal-Organic Framework Host for Highly Reversible Dendrite-Free Zinc Metal Anodes. Joule 2019, 3, 1289–1300. [Google Scholar] [CrossRef]
- Wang, S.B.; Ran, Q.; Yao, R.Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.Y.; Jiang, Q. Lamella-Nanostructured Eutectic Zinc–Aluminum Alloys as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Batteries. Nat. Commun. 2020, 11, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Cui, T.; Pulletikurthi, G.; Lahiri, A.; Carstens, T.; Olschewski, M.; Endres, F. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries. Angew. Chem. Int. Ed. 2016, 55, 2889–2893. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, Z.; Deng, W.; Wei, W.; Chen, L.; Pan, A.; Ma, J.; Wang, C.; Zhu, L.; Xie, L. Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Lett. 2021, 6, 675–683. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Wang, Z.; Lei, H.; Chen, Z.; Mai, W. Novel 3D Nanoporous Zn–Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. Small 2020, 16, 2001323. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Lee, J.; Ko, S.; Lim, G.; Yu, S.-H.; Hong, J.; Lee, M. Stimulating Cu–Zn Alloying for Compact Zn Metal Growth Towards High Energy Aqueous Batteries and Hybrid Supercapacitors. Energy Environ. Sci. 2022, 15, 2889–2899. [Google Scholar] [CrossRef]
- Zhang, Y.; Howe, J.D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Lett. 2021, 6, 404–412. [Google Scholar] [CrossRef]
- Tian, H.; Li, Z.; Feng, G.; Yang, Z.; Fox, D.; Wang, M.; Zhou, H.; Zhai, L.; Kushima, A.; Du, Y. Stable, High-Performance, Dendrite-Free, Seawater-Based Aqueous Batteries. Nat. Commun. 2021, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible Zinc-Based Anodes Enabled by Zincophilic Antimony Engineered MXene for Stable and Dendrite-Free Aqueous Zinc Batteries. Energy Storage Mater. 2021, 41, 343–353. [Google Scholar] [CrossRef]
- Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685. [Google Scholar] [CrossRef]
- Zhang, W.J. Lithium Insertion/Extraction Mechanism in Alloy Anodes for Lithium-Ion Batteries. J. Power Sources 2011, 196, 877–885. [Google Scholar] [CrossRef]
- Jin, S.; Ye, Y.; Niu, Y.; Xu, Y.; Jin, H.; Wang, J.; Sun, Z.; Cao, A.; Wu, X.; Luo, Y. Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. J. Am. Chem. Soc. 2020, 142, 8818–8826. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, Y.; Xu, B.-B.; Liu, T.-X.; Liu, X.; Ma, F.; Gu, X.; Lai, C. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small 2021, 18, 2104640. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, G.; Trócoli, R.; Bani Hashemi, A.; La Mantia, F. An Electrochemical Investigation of the Aging of Copper Hexacyanoferrate during the Operation in Zinc-Ion Batteries. Electrochim. Acta 2016, 222, 74–83. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Song, B.; Zhang, Y.; Ma, H.; Zhang, J. Encapsulation of Zinc Hexacyanoferrate Nanocubes with Manganese Oxide Nanosheets for High-Performance Rechargeable Zinc Ion Batteries. J. Mater. Chem. A 2017, 5, 23628–23633. [Google Scholar] [CrossRef]
- Hao, J.; Mou, J.; Zhang, J.; Dong, L.; Liu, W.; Xu, C.; Kang, F. Electrochemically Induced Spinel-Layered Phase Transition of Mn3O4 in High Performance Neutral Aqueous Rechargeable Zinc Battery. Electrochim. Acta 2018, 259, 170–178. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Boosting Zn-Ion Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption. Adv. Mater. 2019, 31, 1904948. [Google Scholar] [CrossRef]
- Lee, B.; Seo, H.R.; Lee, H.R.; Yoon, C.S.; Kim, J.H.; Chung, K.Y.; Cho, B.W.; Oh, S.H. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem 2016, 9, 2948–2956. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef]
- Nagy, T.; Nagy, L.; Erdélyi, Z.; Baradács, E.; Deák, G.; Zsuga, M.; Kéki, S. “In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery. Batteries 2022, 8, 212. [Google Scholar] [CrossRef]
- Xu, M.; Ivey, D.G.; Xie, Z.; Qu, W.; Dy, E. The State of Water in 1-Butly-1-Methyl-Pyrrolidinium Bis(Trifluoromethanesulfonyl)Imide and Its Effect on Zn/Zn(II) Redox Behavior. Electrochim. Acta 2013, 97, 289–295. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1, 11619. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science 2015, 350, 938–943. [Google Scholar] [CrossRef]
- Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046. [Google Scholar] [CrossRef]
- Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a Low-Cost Rechargeable Aqueous Zinc Ion Battery Cathode. Chem. Commun. 2018, 54, 4457–4460. [Google Scholar] [CrossRef]
- Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D.P.; Rodríguez-Pérez, I.A.; Jiang, J.X.; Fang, C. A ZnCl2 Water-in-Salt Electrolyte for a Reversible Zn Metal Anode. Chem. Commun. 2018, 54, 14097–14099. [Google Scholar] [CrossRef]
- Ye, Z.; Cao, Z.; Lam Chee, M.O.; Dong, P.; Ajayan, P.M.; Shen, J.; Ye, M. Advances in Zn-Ion Batteries via Regulating Liquid Electrolyte. Energy Storage Mater. 2020, 32, 290–305. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, T.; Lu, T.; Shapouri Ghazvini, M.; Endres, F. Anion Effects on the Solid/Ionic Liquid Interface and the Electrodeposition of Zinc. J. Phys. Chem. C 2016, 120, 20224–20231. [Google Scholar] [CrossRef]
- Geng, M.; Northwood, D.O. Development of Advanced Rechargeable Ni/MH and Ni/Zn Batteries. Int. J. Hydrogen Energy 2003, 28, 633–636. [Google Scholar] [CrossRef]
- Kan, J.; Xue, H.; Mu, S. Effect of Inhibitors on Zn-Dendrite Formation for Zinc-Polyaniline Secondary Battery. J. Power Sources 1998, 74, 113–116. [Google Scholar] [CrossRef]
- Olbasa, B.W.; Fenta, F.W.; Chiu, S.F.; Tsai, M.C.; Huang, C.J.; Jote, B.A.; Beyene, T.T.; Liao, Y.F.; Wang, C.H.; Su, W.N. High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Appl. Energy Mater. 2020, 3, 4499–4508. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Huang, S.; Fan, S.; Sun, L.; Tian, B.; Chen, F.; Wang, Y.; Shi, Y.; Yang, H.Y. Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Lett. 2020, 12, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Zhu, X.; Xue, L.; Ni, M.; Zhao, Y.; Liu, B.; Xia, H. The Function of Mn2+ Additive in Aqueous Electrolyte for Zn/δ-MnO2 Battery. Electrochim. Acta 2020, 351, 136445. [Google Scholar] [CrossRef]
- Huang, Y.; Mou, J.; Liu, W.; Wang, X.; Dong, L.; Kang, F.; Xu, C. Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Lett. 2019, 11, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamoun, M.; Brant, W.R.; Tai, C.W.; Karlsson, G.; Noréus, D. Rechargeability of Aqueous Sulfate Zn/MnO2 Batteries Enhanced by Accessible Mn2+ Ions. Energy Storage Mater. 2018, 15, 351–360. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Zeng, Z.; Reed, D.; Li, X.; Liu, X. Engineering Stable Zn-MnO2 Batteries by Synergistic Stabilization between the Carbon Nanofiber Core and Birnessite-MnO2 Nanosheets Shell. Chem. Eng. J. 2021, 405, 126969. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Xu, Y.; Zeng, Z.; Tian, H.; Velayutham, M.; Shi, W.; Li, W.; Wang, C.; Reed, D. Charging Activation and Desulfurization of MnS Unlock the Active Sites and Electrochemical Reactivity for Zn-Ion Batteries. Nano Energy 2020, 75, 104869. [Google Scholar] [CrossRef]
- Wang, P.; Xie, X.; Xing, Z.; Chen, X.; Fang, G.; Lu, B.; Zhou, J.; Liang, S.; Fan, H.J. Mechanistic Insights of Mg2+-Electrolyte Additive for High-Energy and Long-Life Zinc-Ion Hybrid Capacitors. Adv. Energy Mater. 2021, 11, 2101158. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.; Feng, J.; Wang, Y.; Wu, X.; Ma, P.; Zhang, X.; Wang, G.; Yan, X. A Rechargeable Aqueous Zinc/Sodium Manganese Oxides Battery with Robust Performance Enabled by Na2SO4 Electrolyte Additive. Energy Storage Mater. 2021, 38, 299–308. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. Nat. Commun. 2018, 9, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhang, Z.; Li, J.; Luo, N.; Chai, G.L.; Miller, T.S.; Lai, F.; Shearing, P.; Brett, D.J.L.; Han, D. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Lett. 2021, 6, 395–403. [Google Scholar] [CrossRef]
- Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q. Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Lett. 2021, 13, 89. [Google Scholar] [CrossRef]
- Wu, H.Y.; Gu, X.; Huang, P.; Sun, C.; Hu, H.; Zhong, Y.; Lai, C. Polyoxometalate Driven Dendrite-Free Zinc Electrodes with Synergistic Effects of Cation and Anion Cluster Regulation. J. Mater. Chem. A 2021, 9, 7025–7033. [Google Scholar] [CrossRef]
- Weng, G.M.; Li, Z.; Cong, G.; Zhou, Y.; Lu, Y.C. Unlocking the Capacity of Iodide for High-Energy-Density Zinc/Polyiodide and Lithium/Polyiodide Redox Flow Batteries. Energy Environ. Sci. 2017, 10, 735–741. [Google Scholar] [CrossRef]
- Liu, S.; Shang, W.; Yang, Y.; Kang, D.; Li, C.; Sun, B.; Kang, L.; Yun, S.; Jiang, F. Effects of I3− Electrolyte Additive on the Electrochemical Performance of Zn Anodes and Zn/MnO2 Batteries. Batter. Supercaps 2022, 5, e202100221. [Google Scholar] [CrossRef]
- Abdulla, J.; Cao, J.; Zhang, D.; Zhang, X.; Sriprachuabwong, C.; Kheawhom, S.; Wangyao, P.; Qin, J. Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 4602–4609. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, X.; Hao, Y.; Yang, Y.; Qian, Y.; Chang, G.; Zhang, Y.; Tang, Q.; Hu, A.; Chen, X. Self-Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes. Adv. Funct. Mater. 2022, 32, 2112091. [Google Scholar] [CrossRef]
- Zeng, X.; Mao, J.; Hao, J.; Liu, J.; Liu, S.; Wang, Z.; Wang, Y.; Zhang, S.; Zheng, T.; Liu, J. Electrolyte Design for In Situ Construction of Highly Zn2+-Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions. Adv. Mater. 2021, 33, 2007416. [Google Scholar] [CrossRef]
- Xin, W.; Miao, L.; Zhang, L.; Peng, H.; Yan, Z.; Zhu, Z. Turning the Byproduct Zn4(OH)6SO4·xH2O into a Uniform Solid Electrolyte Interphase to Stabilize Aqueous Zn Anode. ACS Mater. Lett. 2021, 3, 1819–1825. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.; Du, H.; Yang, Y.; Gao, Z.; Qie, L.; Huang, Y. Lanthanum Nitrate as Aqueous Electrolyte Additive for Favourable Zinc Metal Electrodeposition. Nat. Commun. 2022, 13, 3252. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Meng, X.; Jiang, W.; Ling, M.; Yan, L.; Liang, C. In-Situ Constructing Polyacrylamide Interphase Enables Dendrite-Free Zinc Anode in Aqueous Batteries. Electrochim. Acta 2021, 378, 138106. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Fu, L.; Wu, S.; Tang, Y.; Ji, X.; Wang, H. The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. Angew. Chem. Int. Ed. 2019, 58, 15841–15847. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, J.; Lv, Z.; Wang, Q.; Zhang, Y.; Lu, G.; Zhao, J.; Cui, G. In-Situ Formed All-Amorphous Poly (Ethylene Oxide)-Based Electrolytes Enabling Solid-State Zn Electrochemistry. Chem. Eng. J. 2021, 417, 128096. [Google Scholar] [CrossRef]
- Yan, M.; Xu, C.; Sun, Y.; Pan, H.; Li, H. Manipulating Zn Anode Reactions through Salt Anion Involving Hydrogen Bonding Network in Aqueous Electrolytes with PEO Additive. Nano Energy 2021, 82, 105379. [Google Scholar] [CrossRef]
- Jin, Y.; Han, K.S.; Shao, Y.; Sushko, M.L.; Xiao, J.; Pan, H.; Liu, J. Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Adv. Funct. Mater. 2020, 30, 20203932. [Google Scholar] [CrossRef]
- Lin, C.; Liu, Y.; Zhang, X.; Miao, X.; Chen, Y.; Chen, S.; Zhang, Y. Regulating the Plating Process of Zinc with Highly Efficient Additive for Long-life Zinc Anode. J. Power Sources 2022, 549, 232078. [Google Scholar] [CrossRef]
- Bani Hashemi, A.; Kasiri, G.; La Mantia, F. The Effect of Polyethyleneimine as an Electrolyte Additive on Zinc Electrodeposition Mechanism in Aqueous Zinc-Ion Batteries. Electrochim. Acta 2017, 258, 703–708. [Google Scholar] [CrossRef]
- Gao, S.; Han, J.; Liu, Z.; Wang, K.; Jiang, K.; Guo, C.; Tan, Y.; Zhou, D.; Shi, W. Polyvinyl Pyrrolidone as Electrolyte Additive for Aqueous Zinc Batteries with MnO2 Cathode. J. Electrochem. Soc. 2021, 168, 080514. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, X.; Gao, S.; Xu, D.; Wang, Z.; Ye, Z.; Wang, L.; Chen, B.; Li, L.; Ye, M. Ultrastable Zinc Anode by Simultaneously Manipulating Solvation Sheath and Inducing Oriented Deposition with PEG Stability Promoter. Small 2022, 18, 2103345. [Google Scholar] [CrossRef]
- Bayaguud, A.; Luo, X.; Fu, Y.; Zhu, C. Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries. ACS Energy Lett. 2020, 5, 3012–3020. [Google Scholar] [CrossRef]
- Hao, J.; Long, J.; Li, B.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Yang, Z.; Pang, W.K.; Guo, Z. Toward High-Performance Hybrid Zn-Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive. Adv. Funct. Mater. 2019, 29, 1903605. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y. Surfactant Widens the Electrochemical Window of an Aqueous Electrolyte for Better Rechargeable Aqueous Sodium/Zinc Battery. J. Mater. Chem. A 2017, 5, 730–738. [Google Scholar] [CrossRef]
- Hosseini, S.; Lao-atiman, W.; Han, S.J.; Arpornwichanop, A.; Yonezawa, T.; Kheawhom, S. Discharge Performance of Zinc-Air Flow Batteries Under the Effects of Sodium Dodecyl Sulfate and Pluronic F-127. Sci. Rep. 2018, 8, 14909. [Google Scholar] [CrossRef] [Green Version]
- Kurmanbayeva, I.; Rakhymbay, L.; Korzhynbayeva, K.; Adi, A.; Batyrbekuly, D.; Mentbayeva, A.; Bakenov, Z. Tetrapropylammonium Hydroxide as a Zinc Dendrite Growth Suppressor for Rechargeable Aqueous Battery. Front. Energy Res. 2020, 8, 599009. [Google Scholar] [CrossRef]
- Yao, R.; Qian, L.; Sui, Y.; Zhao, G.; Guo, R.; Hu, S.; Liu, P.; Zhu, H.; Wang, F.; Zhi, C. A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Adv. Energy Mater. 2022, 12, 2102780. [Google Scholar] [CrossRef]
- Guan, K.; Tao, L.; Yang, R.; Zhang, H.; Wang, N.; Wan, H.; Cui, J.; Zhang, J.; Wang, H.; Wang, H. Anti-Corrosion for Reversible Zinc Anode via a Hydrophobic Interface in Aqueous Zinc Batteries. Adv. Energy Mater. 2022, 12, 2103557. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, K.; Huo, W.; Wang, Y.; Yao, G.; Gu, X.; Cheng, H.; Mai, L.; Hu, C.; Wang, X. Diethyl Ether as Self-Healing Electrolyte Additive Enabled Long-Life Rechargeable Aqueous Zinc Ion Batteries. Nano Energy 2019, 62, 275–281. [Google Scholar] [CrossRef]
- Shi, J.; Xia, K.; Liu, L.; Liu, C.; Zhang, Q.; Li, L.; Zhou, X.; Liang, J.; Tao, Z. Ultrahigh Coulombic Efficiency and Long-Life Aqueous Zn Anodes Enabled by Electrolyte Additive of Acetonitrile. Electrochim. Acta 2020, 358, 136937. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Tian, Y.; Chen, H.; Zhang, S.J.; Sun, C.; Li, C.; Kiefel, M.; Lai, C.; Lin, Z. Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode. Nano-Micro Lett. 2022, 14, 110. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, W.; Yang, N.; Xu, X.; Huang, C.; Zhou, Y.; Zhang, M.; Yuan, X.; Hu, J.; Li, C. Biomolecular Regulation of Zinc Deposition to Achieve Ultra-Long Life and High-Rate Zn Metal Anodes. Small 2022, 18, 2202509. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xie, K.; Peng, R.; Yuan, B.; Wang, Q.; Wang, C. Surface Protection and Interface Regulation for Zn Anode via 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid Electrolyte Additive toward High-Performance Aqueous Batteries. Small 2022, 18, 2107398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Mu, Y.; Chen, L.; Li, D.; Liu, W.; Yang, C.; Zhang, S.; Wang, Q.; Jiang, P.; Ge, G. Toward Stable Zinc Aqueous Rechargeable Batteries by Anode Morphology Modulation via Polyaspartic Acid Additive. Energy Storage Mater. 2022, 45, 777–785. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, R.; Yang, W.; Han, X.; Hou, C.; Zhang, Q.; Li, Y.; Li, K.; Wang, H. Synergistic Solvation and Interface Regulations of Eco-Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2112693. [Google Scholar] [CrossRef]
- Wilcox, G.D.; Mitchell, P.J. Electrolyte Additives for Zinc-Anoded Secondary Cells I. Brighteners, Levellers and Complexants. J. Power Sources 1989, 28, 345–359. [Google Scholar] [CrossRef]
- Geng, Y.; Pan, L.; Peng, Z.; Sun, Z.; Lin, H.; Mao, C.; Wang, L.; Dai, L.; Liu, H.; Pan, K. Electrolyte Additive Engineering for Aqueous Zn Ion Batteries. Energy Storage Mater. 2022, 51, 733–755. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, F.; Fan, G.; Liu, J.; Yu, M.; Yan, Z.; Zhang, N.; Cheng, F. Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 47650–47658. [Google Scholar] [CrossRef]
- Han, S.D.; Rajput, N.N.; Qu, X.; Pan, B.; He, M.; Ferrandon, M.S.; Liao, C.; Persson, K.A.; Burrell, A.K. Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes. ACS Appl. Mater. Interfaces 2016, 8, 3021–3031. [Google Scholar] [CrossRef] [Green Version]
- Chae, M.S.; Heo, J.W.; Kwak, H.H.; Lee, H.; Hong, S.T. Organic Electrolyte-Based Rechargeable Zinc-Ion Batteries Using Potassium Nickel Hexacyanoferrate as a Cathode Material. J. Power Sources 2017, 337, 204–211. [Google Scholar] [CrossRef]
- Kundu, D.; Hosseini Vajargah, S.; Wan, L.; Adams, B.; Prendergast, D.; Nazar, L.F. Aqueous: Vs. Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. Energy Environ. Sci. 2018, 11, 881–892. [Google Scholar] [CrossRef]
- Wang, F.; Sun, W.; Shadike, Z.; Hu, E.; Ji, X.; Gao, T.; Yang, X.Q.; Xu, K.; Wang, C. How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. Angew. Chem. Int. Ed. 2018, 57, 11978–11981. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Yang, H.; Yang, J.; Nuli, Y.; Wang, J. Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 2760–2764. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xiao, Q.; Fang, Y.; Li, L.; Yuan, W. A Rechargeable Zn/Graphite Dual-Ion Battery with an Ionic Liquid-Based Electrolyte. Ionics 2019, 25, 1303–1313. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J.A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv. Mater. 2020, 32, 1908121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Pulletikurthi, G.; Lahiri, A.; Cui, T.; Endres, F. Suppressing the Dendritic Growth of Zinc in an Ionic Liquid Containing Cationic and Anionic Zinc Complexes for Battery Applications. Dalton Trans. 2016, 45, 8089–8098. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Chi, X.; Liu, Y.; Wang, L.; Du, Y.; Ren, Y.; Liu, Y. An Inorganic Salt Reinforced Zn2+-Conducting Solid-State Electrolyte for Ultra-Stable Zn Metal Batteries. J. Mater. Chem. A 2019, 7, 22287–22295. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, C.; Zhu, H.; Xie, X.; Gao, J.; Deng, C.; Han, M.; Liang, S.; Zhou, J. Ion-Confinement Effect Enabled by Gel Electrolyte for Highly Reversible Dendrite-Free Zinc Metal Anode. Energy Storage Mater. 2020, 27, 109–116. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn–MnO2 Battery. Adv. Mater. 2017, 29, 1700274. [Google Scholar] [CrossRef]
- Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y. High-Performance Flexible Quasi-Solid-State Zn-MnO2 Battery Based on MnO2 Nanorod Arrays Coated 3D Porous Nitrogen-Doped Carbon Cloth. J. Mater. Chem. A 2017, 5, 14838–14846. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Song, M.; Liang, P.; Zhang, X.; Tiep, N.H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H. A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv. Mater. 2018, 30, 1803181. [Google Scholar] [CrossRef]
- Ho, V.C.; Lim, H.; Kim, M.J.; Mun, J. Improving the Performance of Aqueous Zinc-Ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chem. Asian J. 2022, 17, e202200289. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, M.; Ma, H.; Zhou, W.; Xu, X. Advances and Perspectives on Separators of Aqueous Zinc Ion Batteries. Energy Rev. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Yuan, D.; Manalastas, W.; Zhang, L.; Chan, J.J.; Meng, S.; Chen, Y.; Srinivasan, M. Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. ChemSusChem 2019, 12, 4889–4900. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, Y.; Lu, Z.; Zhang, J.; Han, N.; Wang, Y.; Li, X.M.; Lin, M.; Zeng, L. A Cation Selective Separator Induced Cathode Protective Layer and Regulated Zinc Deposition for Zinc Ion Batteries. J. Mater. Chem. A 2021, 9, 4734–4743. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, Y.H.; Kim, S.W.; Seo, J.Y.; Lee, S.Y.; Nyholm, L. Why Cellulose-Based Electrochemical Energy Storage Devices? Adv. Mater. 2021, 33, 2000892. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, M.; Tian, Q.; Chen, J.; Xu, X.; Wong, C.P. Cotton-Derived Cellulose Film as a Dendrite-Inhibiting Separator to Stabilize the Zinc Metal Anode of Aqueous Zinc Ion Batteries. Energy Storage Mater. 2022, 44, 57–65. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Zhang, X.; Okhawilai, M.; Wang, S.; Han, J.; Qin, J.; Huang, Y. Modulating Zn Deposition via Ceramic-Cellulose Separator with Interfacial Polarization Effect for Durable Zinc Anode. Nano Energy 2021, 89, 106322. [Google Scholar] [CrossRef]
Anodes | Overpotential | Performance | Cycled Life | Ref |
---|---|---|---|---|
AC-Zn | ~20 mV | 1 mA cm−2–1 mAh cm−2 | 200 h | [67] |
CF-Zn | ~13 mV | 1 mA cm−2–1 mAh cm−2 | 2500 h | [68] |
CB-Zn | ~160 mV | 0.5 mA cm−2–0.5 mAh cm−2 | 400 h | [70] |
PEDOT:PSS/GS-Zn | ~25 mV | 1 mA cm−2–1 mAh cm−2 | 500 h | [72] |
rGO-Zn | ~20 mV | 1 mA cm−2–1 mAh cm−2 | 300 h | [73] |
rGO-Zn | ~80 mV | 1 mA cm−2–2 mAh cm−2 | 200 h | [74] |
NGO-Zn | ~32 mV | 1 mA cm−2–1 mAh cm−2 | 1200 h | [75] |
CNTs scaffold-Zn | ~36 mV | 0.1 mA cm−2–0.5 mAh cm−2 | 1800 h | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thieu, N.A.; Li, W.; Chen, X.; Hu, S.; Tian, H.; Tran, H.N.N.; Li, W.; Reed, D.M.; Li, X.; Liu, X. An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries 2023, 9, 41. https://doi.org/10.3390/batteries9010041
Thieu NA, Li W, Chen X, Hu S, Tian H, Tran HNN, Li W, Reed DM, Li X, Liu X. An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries. 2023; 9(1):41. https://doi.org/10.3390/batteries9010041
Chicago/Turabian StyleThieu, Nhat Anh, Wei Li, Xiujuan Chen, Shanshan Hu, Hanchen Tian, Ha Ngoc Ngan Tran, Wenyuan Li, David M. Reed, Xiaolin Li, and Xingbo Liu. 2023. "An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries" Batteries 9, no. 1: 41. https://doi.org/10.3390/batteries9010041
APA StyleThieu, N. A., Li, W., Chen, X., Hu, S., Tian, H., Tran, H. N. N., Li, W., Reed, D. M., Li, X., & Liu, X. (2023). An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries, 9(1), 41. https://doi.org/10.3390/batteries9010041