Nitrogen, Phosphorus Co-Doped Graphite Felt as Highly Efficient Electrode for VO2+/VO2+ Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Aqueous Solution of EDTMPA
2.2. Preparation of NPGF
2.3. Characterization of the NPGF
2.4. Electrochemical Characterization
2.5. Single-Battery Tests
3. Results and Discussion
3.1. Structure and Elemental Composition of NPGF
3.2. Electrochemical Performance of NPGF
3.3. Redox Flow Battery Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.L.; Weber, A.Z. Advanced Redox-Flow Batteries: A Perspective. J. Electrochem. Soc. 2015, 163, A5064–A5067. [Google Scholar] [CrossRef]
- Lourenssen, K.; Williams, J.; Ahmadpour, F.; Clemmer, R.; Tasnim, S. Vanadium redox flow batteries: A comprehensive review. J. Energy Storage 2019, 25, 100844. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, Y.-J.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Loskutov, A.; Kurkin, A.; Kuzmin, I.; Lipuzhin, I. Ways to Ensure Parallel Operation of Vanadium Flow Batteries to Create High Power Energy Storage Systems. Batteries 2022, 8, 120. [Google Scholar] [CrossRef]
- Puleston, T.; Clemente, A.; Costa-Castelló, R.; Serra, M. Modelling and Estimation of Vanadium Redox Flow Batteries: A Review. Batteries 2022, 8, 121. [Google Scholar] [CrossRef]
- Noack, J.; Wietschel, L.; Roznyatovskaya, N.; Pinkwart, K.; Tübke, J. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems. Energies 2016, 9, 627. [Google Scholar] [CrossRef]
- Xing, F.; Liu, T.; Yin, Y.; Bi, R.; Zhang, Q.; Yin, L.; Li, X. Highly Active Hollow Porous Carbon Spheres@Graphite Felt Composite Electrode for High Power Density Vanadium Flow Batteries. Adv. Funct. Mater. 2022, 32, 2111267. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, J.; Li, Z.; Zhou, H.; Liu, L.; Wu, Z.; Qiu, X. Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta 2013, 89, 429–435. [Google Scholar] [CrossRef]
- Greco, K.V.; Forner-Cuenca, A.; Mularczyk, A.; Eller, J.; Brushett, F.R. Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries. ACS Appl. Mater. Interfaces 2018, 10, 44430–44442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xi, J.; Zhou, H.; Qiu, X. KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim. Acta 2016, 218, 15–23. [Google Scholar] [CrossRef]
- Jiang, H.R.; Shyy, W.; Wu, M.C.; Zhang, R.H.; Zhao, T.S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy 2019, 233–234, 105–113. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Lv, Y.; Lin, L.; Liu, Y.; Zhou, X. Bio-inspired multiscale-pore-network structured carbon felt with enhanced mass transfer and activity for vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 20347–20355. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Xu, C.; Zhang, H. Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density. ACS Appl. Mater. Interfaces 2017, 9, 4626–4633. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Lin, G.-Y.; Liu, T.-R.; Wondimu, T.H.; Wang, K.-C.; Wang, C.-H. Ta2O5-Nanoparticle-Modified Graphite Felt as a High-Performance Electrode for a Vanadium Redox Flow Battery. ACS Sustain. Chem. Eng. 2018, 6, 3019–3028. [Google Scholar] [CrossRef]
- Xiang, Y.; Daoud, W.A. Binary NiCoO2-modified graphite felt as an advanced positive electrode for vanadium redox flow batteries. J. Mater. Chem. A 2019, 7, 5589–5600. [Google Scholar] [CrossRef]
- Ejigu, A.; Edwards, M.; Walsh, D.A. Synergistic Catalyst–Support Interactions in a Graphene–Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries. ACS Catal. 2015, 5, 7122–7130. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xi, J.; Li, Z.; Zhang, Z.; Yu, L.; Liu, L.; Qiu, X.; Chen, L. CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Adv. 2014, 4, 61912–61918. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Liu, T.-R.; Wondimu, T.H.; Wang, K.-C.; Wang, C.-H. Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery. ACS Appl. Energy Mater. 2019, 2, 2541–2551. [Google Scholar] [CrossRef]
- Han, P.; Wang, H.; Liu, Z.; Chen, X.; Ma, W.; Yao, J.; Zhu, Y.; Cui, G. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 2011, 49, 693–700. [Google Scholar] [CrossRef]
- Daugherty, M.C.; Gu, S.; Aaron, D.S.; Kelly, R.E.; Ashraf Gandomi, Y.; Hsieh, C.T. Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries. Nanoscale 2020, 12, 7834–7842. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; He, Z.; Guo, D.; Zhou, X. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries. J. Power Sources 2019, 440, 227114. [Google Scholar] [CrossRef]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735. [Google Scholar] [CrossRef]
- He, Z.; Jiang, Y.; Wei, Y.; Zhao, C.; Jiang, F.; Li, L.; Zhou, H.; Meng, W.; Wang, L.; Dai, L. N,P co-doped carbon microsphere as superior electrocatalyst for VO2+/VO2+ redox reaction. Electrochim. Acta 2018, 259, 122–130. [Google Scholar] [CrossRef]
- Xu, A.; Shi, L.; Zeng, L.; Zhao, T.S. First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries. Electrochim. Acta 2019, 300, 389–395. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H. Graphite Felt Coated with Dopamine-Derived Nitrogen-Doped Carbon as a Positive Electrode for a Vanadium Redox Flow Battery. J. Electrochem. Soc. 2015, 162, A1675–A1681. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, C.; Tang, A. Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries. J. Mater. Chem. A 2021, 9, 17300–17310. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Zhao, Y.; Mubarak, N.; Xu, M.; Ihsan-Ul-Haq, M.; Zhao, T.; Chen, Q.; Kim, J.-K. Deciphering the exceptional kinetics of hierarchical nitrogen-doped carbon electrodes for high-performance vanadium redox flow batteries. J. Mater. Chem. A 2022, 10, 5605–5613. [Google Scholar] [CrossRef]
- Park, S.; Kim, H. Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 12276–12283. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Liu, X.; Liu, L.; Xi, J. ZIF-derived holey electrode with enhanced mass transfer and N-rich catalytic sites for high-power and long-life vanadium flow batteries. J. Energy Chem. 2022, 72, 545–553. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Wang, Y.; Fang, Z. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery. Appl. Energy 2020, 261, 114369. [Google Scholar] [CrossRef]
- Wu, X.W.; Deng, Q.; Peng, C.; Zeng, X.X.; Wu, A.J.; Zhou, C.J.; Ma, Q.; Yin, Y.X.; Lu, X.Y.; Guo, Y.G. Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life. ACS Appl. Mater. Interfaces 2019, 11, 11451–11458. [Google Scholar] [CrossRef]
- Bi, Z.; Huo, L.; Kong, Q.; Li, F.; Chen, J.; Ahmad, A.; Wei, X.; Xie, L.; Chen, C.M. Structural Evolution of Phosphorus Species on Graphene with a Stabilized Electrochemical Interface. ACS Appl. Mater. Interfaces 2019, 11, 11421–11430. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. Engl. 2013, 52, 3110–3116. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angew. Chem. Int. Ed. Engl. 2016, 55, 2230–2234. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Pasala, V.; Ramavath, J.N.; He, C.; Ramani, V.K.; Ramanujam, K. N- and P-co-doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery. ChemistrySelect 2018, 3, 8678–8687. [Google Scholar] [CrossRef]
- Park, S.E.; Lee, K.; Suharto, Y.; Kim, K.J. Enhanced electrocatalytic performance of nitrogen- and phosphorous-functionalized carbon felt electrode for VO2+/VO2+ redox reaction. Int. J. Energy Res. 2020, 45, 1806–1817. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; He, X.; Zhang, H.; Li, H.; Xiao, N.; Qiu, J. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renew. Energy 2021, 170, 188–196. [Google Scholar] [CrossRef]
- Yu, L.; Lin, F.; Xu, L.; Xi, J. P-doped electrode for vanadium flow battery with high-rate capability and all-climate adaptability. J. Energy Chem. 2019, 35, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Yang, S.Y.; Kim, K.J. Boron-functionalized carbon felt electrode for enhancing the electrochemical performance of vanadium redox flow batteries. Appl. Surf. Sci. 2021, 546, 148941. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, C.; Tang, A. Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Mater. 2021, 34, 301–310. [Google Scholar] [CrossRef]
- Kim, H.; Yi, J.S.; Lee, D. Marked Electrocatalytic Effects of Two-Step Boron and Oxygen Atomic Doping of Carbon Electrodes for Vanadium Redox Flow Battery. ACS Appl. Energy Mater. 2020, 4, 425–433. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Liu, H.; He, Y.-L.; Hao, M. Sandwich-like multi-scale hierarchical porous carbon with a highly hydroxylated surface for flow batteries. J. Mater. Chem. A 2021, 9, 2345–2356. [Google Scholar] [CrossRef]
Carbon Material | C (at.%) | N (at.%) | P (at.%) | N and P (at.%) | O (at.%) |
---|---|---|---|---|---|
TGF | 89.07 | 1.19 | - | 1.19 | 9.74 |
NPGF-700 | 88.02 | 2.39 | 1.53 | 3.92 | 8.07 |
NPGF-800 | 85.54 | 2.29 | 1.84 | 4.13 | 10.32 |
NPGF-900 | 90.10 | 1.55 | 0.91 | 2.46 | 7.44 |
Electrodes | Membrane | Max J (mA cm−2) | CE (%) | VE (%) | EE (%) | J (mA cm−2) | Ref. |
---|---|---|---|---|---|---|---|
NPGF-800 | Nafion®212 | 300 | 96 | 86 | 82 | 150 | This work |
NPGF-800 | Nafion®212 | 96 | 82 | 79 | 200 | ||
NPGF-800 | Nafion®212 | 97 | 77 | 75 | 250 | ||
NPGF-800 | Nafion®212 | 97 | 73 | 72 | 300 | ||
PGF a | Nafion®212 | 400 | 96 | 82 | 79 | 150 | [46] |
B-CF b | Nafion®117 | 100 | 95 | 85 | 81 | 100 | [47] |
OA-CF c | PSAM j | 300 | - | - | 73 | 300 | [48] |
N-PGF d | Nafion®212 | 300 | - | - | 72 | 300 | [35] |
PEI-DA-CF e | PSAM j | 300 | - | - | 74 | 300 | [32] |
B/O-GF f | Nafion®117 | 170 | 97 | 89 | 86 | 50 | [49] |
SPHC g | Nafion®212 | 300 | 99 | 79 | 78 | 200 | [50] |
GF-NP h | Nafion®117 | 100 | 94 | 80 | 75 | 70 | [42] |
NPCF i | Nafion®212 | 100 | 94 | 84 | 79 | 100 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jialin, Z.; Yiyang, L.; Shanfu, L.; Yan, X. Nitrogen, Phosphorus Co-Doped Graphite Felt as Highly Efficient Electrode for VO2+/VO2+ Reaction. Batteries 2023, 9, 40. https://doi.org/10.3390/batteries9010040
Jialin Z, Yiyang L, Shanfu L, Yan X. Nitrogen, Phosphorus Co-Doped Graphite Felt as Highly Efficient Electrode for VO2+/VO2+ Reaction. Batteries. 2023; 9(1):40. https://doi.org/10.3390/batteries9010040
Chicago/Turabian StyleJialin, Zhang, Liu Yiyang, Lu Shanfu, and Xiang Yan. 2023. "Nitrogen, Phosphorus Co-Doped Graphite Felt as Highly Efficient Electrode for VO2+/VO2+ Reaction" Batteries 9, no. 1: 40. https://doi.org/10.3390/batteries9010040
APA StyleJialin, Z., Yiyang, L., Shanfu, L., & Yan, X. (2023). Nitrogen, Phosphorus Co-Doped Graphite Felt as Highly Efficient Electrode for VO2+/VO2+ Reaction. Batteries, 9(1), 40. https://doi.org/10.3390/batteries9010040