Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Xie, X.; Liang, S.; Lu, B.; Zhou, J. Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Lett. 2021, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.W.; Kim, H.; Beldjoudi, Y.; Kwon, T.-W.; Kim, D.J.; Stoddart, J.F. Redsox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. J. Am. Chem. Soc. 2020, 142, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yuan, C.; Li, T.; Yuan, Z.; Zhang, H.; Li, X. Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane. J. Am. Chem. Soc. 2021, 143, 13135–13144. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, Y.; Ni, Z.; Zhang, Y.; Xu, J.; Kong, T.; Huang, J.; Li, W.; Ma, J.; Wang, Y. Chemically Self-Charging Aqueous Zinc-Organic Battery. J. Am. Chem. Soc. 2021, 143, 15369–15377. [Google Scholar] [CrossRef]
- Yang, W.; Du, X.; Zhao, J.; Chen, Z.; Li, J.; Xie, J.; Zhang, Y.; Cui, Z.; Kong, Q.; Zhao, Z.; et al. Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule 2020, 4, 1557–1574. [Google Scholar] [CrossRef]
- Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J. The Dominant Role of Mn2+ Additive on the Electrochemical Reaction in ZnMn2O4 Cathode for Aqueous Zinc-ion Batteries. Energy Storage Mater. 2020, 28, 407–417. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J.A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv Mater. 2020, 32, e1908121. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc Dendrite Growth and Inhibition Strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries. Adv. Energy Mater. 2020, 11, 2003065. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Javed, M.S.; Lei, H.; Wang, Z.; Liu, B.-T.; Cai, X.; Mai, W. 2D V2O5 Nanosheets as a Binder-free High-energy Cathode for Ultrafast Aqueous and Flexible Zn-ion Batteries. Nano Energy 2020, 70, 104573. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Najam, T.; Siyal, S.H.; Hussain, S.; Saleem, M.; Zhao, Z.; Mai, W. Achieving High-energy Density and Superior Cyclic Stability in Flexible and Lightweight Pseudocapacitor through Synergic Effects of Binder-free CoGa2O4 2D-hexagonal Nanoplates. Nano Energy 2020, 77, 105276. [Google Scholar] [CrossRef]
- Javed, M.S.; Shaheen, N.; Hussain, S.; Li, J.; Shah, S.S.A.; Abbas, Y.; Ahmad, M.A.; Raza, R.; Mai, W. An Ultra-high Energy Density Flexible Asymmetric Supercapacitor Based on Hierarchical Fabric Decorated with 2D Bimetallic Oxide Nanosheets and MOF-derived Porous Carbon Polyhedra. J. Mater. Chem. A 2019, 7, 946–957. [Google Scholar] [CrossRef]
- Javed, M.S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S.S.A.; Han, W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. Small 2022, 18, 2201989. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Q.; Zhao, Y.; Hong, H.; Li, H.; Huang, Z.; Liang, G.; Yang, Q.; Zhi, C. Insight on Organic Molecules in Aqueous Zn-Ion Batteries with an Emphasis on the Zn Anode Regulation. Adv. Energy Mater. 2022, 12, 2102707. [Google Scholar] [CrossRef]
- Guo, S.; Qin, L.; Zhang, T.; Zhou, M.; Zhou, J.; Fang, G.; Liang, S. Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-ion Batteries. Energy Storage Mater. 2021, 34, 545–562. [Google Scholar] [CrossRef]
- Sun, P.; Ma, L.; Zhou, W.; Qiu, M.; Wang, Z.; Chao, D.; Mai, W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive. Angew. Chem. Int. Ed. 2021, 60, 18247–18255. [Google Scholar] [CrossRef]
- Qin, R.; Wang, Y.; Zhang, M.; Wang, Y.; Ding, S.; Song, A.; Yi, H.; Yang, L.; Song, Y.; Cui, Y.; et al. Tuning Zn2+ Coordination Environment to Suppress Dendrite Formation for High-performance Zn-ion Batteries. Nano Energy 2021, 80, 105478. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Yang, W.; Chen, B.; Zhao, Z.; Qiu, H.; Dong, S.; Zhou, X.; Cui, G.; Chen, L. “Water-in-deep Eutectic Solvent” Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries. Nano Energy 2019, 57, 625–634. [Google Scholar] [CrossRef]
- Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C. Solvation Structure Design for Aqueous Zn Metal Batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409. [Google Scholar] [CrossRef]
- Hosseini, S.; Abbasi, A.; Uginet, L.-O.; Haustraete, N.; Praserthdam, S.; Yonezawa, T.; Kheawhom, S. The Influence of Dimethyl Sulfoxide as Electrolyte Additive on Anodic Dissolution of Alkaline Zinc-Air Flow Battery. Sci. Rep. 2019, 9, 14958. [Google Scholar] [CrossRef] [PubMed]
- Kao-Ian, W.; Nguyen, M.T.; Yonezawa, T.; Pornprasertsuk, R.; Qin, J.; Siwamogsatham, S.; Kheawhom, S. Highly Stable Rechargeable Zinc-ion Battery using Dimethyl Sulfoxide Electrolyte. Mater. Today Energy 2021, 21, 100738. [Google Scholar] [CrossRef]
- Kaveevivitchai, W.; Manthiram, A. High-capacity Zinc-ion Storage in an Open-tunnel Oxide for Aqueous and Nonaqueous Zn-ion Batteries. J. Mater. Chem. A 2016, 4, 18737–18741. [Google Scholar] [CrossRef]
- Hou, Z.; Tan, H.; Gao, Y.; Li, M.; Lu, Z.; Zhang, B. Tailoring Desolvation Kinetics Enables Stable Zinc Metal Anodes. J. Mater. Chem. A 2020, 8, 19367–19374. [Google Scholar] [CrossRef]
- Song, X.; He, H.; Shiraz, M.H.A.; Zhu, H.; Khosrozadeh, A.; Liu, J. Enhanced Reversibility and Electrochemical Window of Zn-ion Batteries with an Acetonitrile/water-in-salt Electrolyte. Chem. Commun. 2021, 57, 1246–1249. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Tang, J.; Hu, J.; Yang, H.; Gu, W.; Fu, Y.; Ji, X. Interfacial Assistant Role of Amine Additives on Zinc Electrodeposition from Deep Eutectic Solvents: An in situ X-ray Imaging Investigation. Electrochim. Acta 2017, 240, 90–97. [Google Scholar] [CrossRef]
- Liu, S.; Mao, J.; Pang, W.K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z. Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2104281. [Google Scholar] [CrossRef]
- Naveed, A.; Yang, H.; Shao, Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S.; Zhang, L.; Ye, A.; He, B.; et al. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries. Adv. Mater. 2019, 31, 1900668. [Google Scholar] [CrossRef]
- Feng, R.; Chi, X.; Qiu, Q.; Wu, J.; Huang, J.; Liu, J.; Liu, Y. Cyclic Ether–Water Hybrid Electrolyte-Guided Dendrite-Free Lamellar Zinc Deposition by Tuning the Solvation Structure for High-Performance Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 40638–40647. [Google Scholar] [CrossRef]
- Abdulla, J.; Cao, J.; Zhang, D.; Zhang, X.; Sriprachuabwong, C.; Kheawhom, S.; Wangyao, P.; Qin, J. Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 4602–4609. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shin, W.; Zhu, L.; Chen, C.; Neuefeind, J.C.; Xu, Y.; Allec, S.I.; Liu, C.; Wei, Z.; Daniyar, A.; et al. The Electrolyte comprising More Robust Water and Superhalides Transforms Zn-metal Anode Reversibly and Dendrite-free. Carbon Energy 2020, 3, 339–348. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Li, Z.; Xu, X.; Su, X.; Lai, J.; Liu, Y.; Ding, K.; Chen, L.; Cai, Y.; et al. Three Birds with One Stone: Tetramethylurea as Electrolyte Additive for Highly Reversible Zn-Metal Anode. Adv. Funct. Mater. 2022, 32, 2209642. [Google Scholar] [CrossRef]
- Qin, H.; Kuang, W.; Hu, N.; Zhong, X.; Huang, D.; Shen, F.; Wei, Z.; Huang, Y.; Xu, J.; He, H. Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries. Adv. Funct. Mater. 2022, 32, 2206695. [Google Scholar] [CrossRef]
- Gao, H.; Lian, K. Proton-conducting Polymer Electrolytes and Their Applications in Solid Supercapacitors: A review. RSC Adv. 2014, 4, 33091–33113. [Google Scholar] [CrossRef]
- Afrifah, V.A.; Phiri, I.; Hamenu, L.; Madzvamuse, A.; Lee, K.S.; Ko, J.M. Electrochemical Properties of Poly(2-acrylamido-2-methylpropane sulfonic acid) Polyelectrolyte Containing Zwitterionic Silica Sulfobetaine for Supercapacitors. J. Power Sources 2020, 479, 228657. [Google Scholar] [CrossRef]
- Niu, B.; Li, Z.; Cai, S.; Luo, D.; Qiao, Y.; Zhou, S.; Li, H.; He, X.; Wang, X. Robust Zn Anode Enabled by a Hydrophilic Adhesive Coating for Long-life Zinc-ion Hybrid Supercapacitors. Chem. Eng. J. 2022, 442, 136217. [Google Scholar] [CrossRef]
- Zhou, H.; Li, M.; Zhu, J.; Chen, R.; Wang, X.; Wang, H.-L. Exploring Polymer Precursors for Low-cost High Performance Carbon fiber: A Materials Genome Approach to Finding Polyacrylonitrile-co-poly(N-vinyl formamide). Polymer 2022, 243, 124570. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Yang, J.; Ji, M.; Yu, J.; Wang, M.; Chai, X.; Yang, B.; Zhu, C.; Xu, J. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. Polymers 2019, 11, 1150. [Google Scholar] [CrossRef]
- Liu, H.; Luo, Q.; Zhang, S.; Shi, L.; Yang, J.; Liu, R.; Wang, M.; Zhu, C.; Xu, J. New Comonomer for Polyacrylonitrile-based Carbon Fiber: Density Functional Theory Study and Experimental Analysis. Polymer 2018, 153, 369–377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-E.; Wang, X. Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries. Batteries 2023, 9, 25. https://doi.org/10.3390/batteries9010025
Liu Y-E, Wang X. Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries. Batteries. 2023; 9(1):25. https://doi.org/10.3390/batteries9010025
Chicago/Turabian StyleLiu, Yu-E, and Xin Wang. 2023. "Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries" Batteries 9, no. 1: 25. https://doi.org/10.3390/batteries9010025
APA StyleLiu, Y.-E., & Wang, X. (2023). Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries. Batteries, 9(1), 25. https://doi.org/10.3390/batteries9010025