A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems
Abstract
:1. Introduction
1.1. Role of EES
- Because power lines are constantly required, if a line fails (due to congestion or any other reason), the provision of energy is halted; also, because lines are always required, delivering power to mobile applications is problematic.
- Depending on the locations and amounts of power supply and demand, a large amount of power flow may be focused onto a single transmission line, causing congestion.
1.1.1. Optimization: High Generation Cost during Peak Hours
- From the standpoint of utilities, there is a significant opportunity to lower total generating costs by storing electricity during the off-peak hours and reintroducing it into the power system during hours of maximum demand.
- During peak periods of higher-than-average energy use, power suppliers must supplement the conventional base-load power facilities with less costly but more flexible sources of production, such as oil- and gas-turbine generators.
- Conversely, from the perspective of customers, EES can cut down the financial burden since it can store electricity purchased at cheap rates during off-peak and use it during peak hours, which would have been costlier if purchased during peak hours.
1.1.2. Continuous and Flexible Supply: Need of the Hour
1.1.3. Distance between Generation and Consumer: A Deciding Factor
1.1.4. Power Grid Congestion: A Point of Concern
1.1.5. Transmission by Cable: Point of Difficulty
1.2. Emerging Needs for EES
1.2.1. A Step towards Greener Earth: More Renewable Energy, Less Fossil Fuel
On Grid Areas
Off-Grid Areas
1.2.2. Smart Grid
2. Types of Electrical Energy Storage System (EES)
3. Working of Electrical Energy Storage System (EES)
3.1. Mechanical Storage Systems
3.1.1. Pumped Hydro Storage (PHS)
3.1.2. Compressed Air Energy Storage (CAES)
3.1.3. Flywheel Energy Storage (FES)
3.2. Electrochemical Storage Systems
3.2.1. Secondary Batteries
Lead–Acid Battery (LA)
Nickel–Cadmium and Nickel–Metal Hydride Battery (NiCd, NiMH)
Lithium-Ion Battery (Li-Ion)
Metal–Air Battery
Sodium–Sulphur Battery (NaS)
Sodium–Nickel Chloride Battery (NaNiCl)
3.2.2. Flow Batteries
Redox Flow Battery (RFB)
Hybrid Flow Battery (HFB)
3.3. Chemical Energy Storage
3.3.1. Hydrogen (H2)
3.3.2. Synthetic Natural Gas (SNG)
3.4. Electrical Storage Systems
3.4.1. Double-Layer Capacitors (DLC)
3.4.2. Superconducting Magnetic Energy Storage (SMES)
3.5. Thermal Storage Systems
3.6. Superconducting Magnetic Energy Storage
4. Review: A Journey towards the Future with Guidance from the Past
Paper ID | Type | Objective Function | ||||
---|---|---|---|---|---|---|
Regulated | Deregulated | Profit Max. | Loss Min. | Gen. Cost Min | Social Welfare Max. | |
[42] | √ | √ | ||||
[43] | √ | |||||
[44] | √ | √ | ||||
[45] | √ | √ | ||||
[46] | √ | √ | √ | √ | ||
[47] | √ | √ | ||||
[48] | √ | √ | ||||
[49] | √ | √ | √ | |||
[50] | √ | √ | √ | |||
[51] | √ | √ | ||||
[52] | √ | √ | √ | √ | ||
[53] | √ | √ | √ | |||
[54] | √ | √ | √ | |||
[56] | √ | √ | √ | |||
[57] | √ | √ | ||||
[58] | √ | √ | ||||
[59] | √ | |||||
[60] | √ | |||||
[63] | √ | |||||
[65] | √ | √ | ||||
[66] | √ | |||||
[67] | √ | √ | ||||
[68] | √ | √ | ||||
[69] | √ | |||||
[70] | √ | |||||
[72] | √ | √ | ||||
[73] | √ | |||||
[74] | √ | √ | ||||
[75] | √ | |||||
[76] | √ | |||||
[78] | √ | |||||
[80] | √ | |||||
[81] | √ | √ |
Paper ID | Renewable Energy Sources | Energy Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wind | Solar | Hydro | Others | Generalized | PSH | Battery | CAES | Others | Generalized | |
[42] | EDV | √ | ||||||||
[43] | √ | √ | √ | |||||||
[44] | √ | √ | √ | Bio, Geo, Hybrid | √ | √ | ||||
[45] | √ | √ | √ | Bio, Geo | √ | |||||
[46] | √ | |||||||||
[47] | √ | √ | flywheel storage, electrochemical storage | |||||||
[48] | √ | √ | ||||||||
[49] | √ | √ | √ | EV | ||||||
[50] | √ | √ | ||||||||
[51] | √ | √ | √ | √ | EV | |||||
[52] | √ | √ | √ | √ | √ | √ | ||||
[53] | √ | √ | √ | |||||||
[54] | √ | |||||||||
[56] | √ | √ | √ | √ | ||||||
[57] | √ | √ | √ | |||||||
[58] | √ | Fuel cell, Hydrogen energy storage | ||||||||
[59] | √ | √ | Geothermal | |||||||
[60] | √ | √ | √ | √ | ||||||
[63] | √ | √ | √ | √ | Flywheel, thermal | |||||
[65] | √ | √ | ||||||||
[66] | √ | |||||||||
[67] | √ | √ | ||||||||
[68] | √ | |||||||||
[69] | √ | √ | √ | √ | √ | √ | ||||
[70] | √ | √ | ||||||||
[72] | √ | √ | √ | |||||||
[73] | √ | |||||||||
[74] | √ | √ | ||||||||
[75] | √ | √ | ||||||||
[76] | √ | √ | ||||||||
[78] | √ | √ | ||||||||
[80] | √ | √ | √ | |||||||
[81] | √ | √ |
Paper ID | Optimization Techniques | |||||
---|---|---|---|---|---|---|
PSO | ABC | BAT | GA | Heuristic | Others | |
[44] | √ | √ | √ | Lagrangian relaxation, quadratic programming and Nelder–Mead Simplex search; heuristic optimization methods, especially genetic algorithms and particle swarm optimization; Pareto-based multi-objective optimization | ||
[45] | √ | √ | simplex method, dynamic programming, Lagrangian relaxation, sequential quadratic programming, Newton’s method and reduced gradient method | |||
[50] | √ | LMP | ||||
[51] | √ | |||||
[53] | √ | √ | ||||
[57] | √ | |||||
[58] | adjustable robust optimization | |||||
[65] | robust optimization | |||||
[67] | √ | |||||
[70] | Monte Carlo | |||||
[72] | √ | √ | Game theory | |||
[81] | √ | √ | MOCPSO |
5. Facts and Analysis of Renewable Energy: A Glimpse
Comprehensive Energy Storage Roadmap (India)
6. Comparative Study of EES Systems
7. Conclusions
- Energy storage systems will play a pivotal role for managing contingency situations apart from acting as integrated part of smart grid.
- The modest and scattered EES market is likely to be large when the smart grid and microgrids are implemented.
- The market for EES systems, particularly small and distributed ones, is growing and will grow in tandem with the renewable energy sector.
- Technical challenges, and also cost and compatibility/sustainability, are potentially critical topics for future initiatives.
- There is scope to work on optimization, power quality and safety issues.
- Upon comparison of different optimization techniques, it has been found that meta-heuristic algorithms outperformed heuristic and linear optimization techniques with the considered objective functions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barik, A.K.; Das, D.; Latif, A.; Hussain, S.; Ustun, T. Optimal Voltage–Frequency Regulation in Distributed Sustainable Energy-Based Hybrid Microgrids with Integrated Resource Planning. Energies 2021, 14, 2735. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Electricity Storage and Renewables: Costs and Markets to 2030. 2017. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017_Summary.pdf (accessed on 6 June 2022).
- Hussain, S.M.S.; Aftab, M.A.; Ali, I.; Ustun, T.S. IEC 61850 based energy management system using plug-in electric vehicles and distributed generators during emergencies. Int. J. Electr. Power Energy Syst. 2020, 119, 105873. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Review of Smart and Innovative Energy Storage Systems. In Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, 30–31 March 2019; pp. 1–6. [Google Scholar]
- Buchana, P.; Ustun, T.S. The role of microgrids & renewable energy in addressing Sub-Saharan Africa’s current and future energy needs. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015; pp. 1–6. [Google Scholar]
- Niyigena, D.; Habineza, C.; Ustun, T.S. Computer-based smart energy management system for rural health centers. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015; pp. 1–5. [Google Scholar]
- International Renewable Energy Agency. From Baseload to Peak: Renewables Provide a Reliable Solution. 2015. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Baseload_to_Peak_2015.pdf (accessed on 18 June 2022).
- Ustun, T.S.; Nakamura, Y.; Hashimoto, J.; Otani, K. Performance Analysis of PV Panels Based on Different Technologies after Two Years of Outdoor Exposure in Fukushima, Japan. Renew. Energy 2019, 136, 159–178. [Google Scholar] [CrossRef]
- Waseem, M.; Manshadi, S.D. Electricity grid resilience amid various natural disasters: Challenges and solutions. Electr. J. 2020, 33, 106864. [Google Scholar] [CrossRef]
- Available online: https://clouglobal.com/the-roles-of-electrical-energy-storage/ (accessed on 18 June 2022).
- Stawska, A.; Romero, N.; de Weerdt, M.; Verzijlbergh, R. Demand response: For congestion management or for grid balancing? Energy Policy 2020, 148, 111920. [Google Scholar] [CrossRef]
- Ustun, T.S.; Hussain, S.M.S.; Syed, M.H.; Dambrauskas, P. IEC-61850-Based Communication for Integrated EV Management in Power Systems with Renewable Penetration. Energies 2021, 14, 2493. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Electric Vehicles Charging Technology Review and Optimal Size Estimation. J. Electr. Eng. Technol. 2020, 15, 2539–2552. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strat. Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Ustun, T.S.; Hussain, S.M.S. Standardized communication model for home energy management system. IEEE Access 2020, 8, 180067–180075. [Google Scholar] [CrossRef]
- European Energy Research Alliance. Energy Storage. Available online: https://www.eera-energystorage.eu/about/sub-programmes.html (accessed on 23 August 2022).
- Available online: https://energystorage.org/why-energy-storage/technologies/ (accessed on 15 June 2022).
- Available online: https://www.hydropower.org/factsheets/pumped-storage (accessed on 15 June 2022).
- Ruiz, R.A.; de Vilder, L.; Prasasti, E.; Aouad, M.; De Luca, A.; Geisseler, B.; Terheiden, K.; Scanu, S.; Miccoli, A.; Roeber, V.; et al. Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater. Renew. Sustain. Energy Rev. 2022, 160, 112281. [Google Scholar] [CrossRef]
- Available online: https://www.ctc-n.org/technologies/compressed-air-energy-storage-caes (accessed on 16 June 2022).
- Pullen, K.R.; Dhand, A. Mechanical and electrical flywheel hybrid technology to store energy in vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Folkson, R., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 476–504. ISBN 9780857095220. [Google Scholar] [CrossRef]
- Keshan, H.; Thornburg, J.; Ustun, T.S. Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016. [Google Scholar]
- Rodrigues, E.; Osório, G.; Godina, R.; Bizuayehu, A.; Lujano-Rojas, J.; Matias, J.; Catalão, J. Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy 2015, 90, 1606–1617. [Google Scholar] [CrossRef]
- Dustmann, C.-H. Advances in ZEBRA batteries. Journal of Power Sources. J. Power Sources 2004, 127, 85–92. [Google Scholar] [CrossRef]
- Ravikumar, M.K.; Rathod, S.; Jaiswal, N.; Patil, S.; Shukla, A. The renaissance in redox flow batteries. J. Solid State Electrochem. 2016, 21, 2467–2488. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; von Colbe, J.B.; Blanchard, D.; Bowman, R.C., Jr.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage—Past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef]
- Cavanagh, K.; Ward, J.K.; Behrens, S.; Bhatt, A.I.; Ratnam, E.L.; Oliver, E.; Hayward, J. Electrical Energy Storage: Technology Overview and Applications; CSIRO: Canberra, Australia, 2015; EP154168.
- Sagadevan, S.; Marlinda, A.; Chowdhury, Z.Z.; Wahab, Y.B.A.; Hamizi, N.A.; Shahid, M.; Mohammad, F.; Podder, J.; Johan, M.R.F. Chapter two—Fundamental electrochemical energy storage systems. In Advances in Supercapacitor and Supercapattery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–43. [Google Scholar] [CrossRef]
- Available online: https://www.sciencedirect.com/topics/engineering/secondary-battery (accessed on 15 June 2022).
- Wade, N.S.; Taylor, P.C. VDE—ETG Energy Storage Task Force: Energy Storage in Power Supply Systems with a High Share of Renewable Energy Sources Significance—State of the Art—Need for Action; VDE: Frankfurt am Main, Germany, December 2008. [Google Scholar]
- Perrin, M.; Malbranche, P.; Mattera, F.; Simonin, L.; Sauer, D.U.; Lailler, P.; Joessen, A.; Willer, B.; Dahlen, M.; Ruddell, A.; et al. Evaluation and perspectives of storage technologies for PV electricity. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume 3, pp. 2194–2197. [Google Scholar]
- Espinar, B.; Mayer, D. The Role of Energy Storage for Mini-Grid Stabilization; Report IEA-PVPS T11-0X:2011; MINES ParisTech/ARMINES: Paris, France, 2011. [Google Scholar]
- Atwater, T.B.; Dobley, A. Metal/Air batteries. In Lindens Handbook of Batteries; Mcgraw-Hill Professional: New York, NY, USA, 2011; ISBN 978-0-07-162421-X. [Google Scholar]
- Worth, B. Metal/Air; INVESTIRE: Rome, Italy, 2002. [Google Scholar]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2019, 7, 4555–4585. [Google Scholar] [CrossRef]
- Patel, P. Available online: http://spectrum.ieee.org/energy/the-smarter-grid/batteries-that-go-with-the-flow (accessed on 2 July 2022).
- Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems—Limiting Global Warming by Transforming Energy Systems. Ph.D. Thesis, University Kassel, Kassel, Germany, July 2009. [Google Scholar]
- International Energy Agency. Prospects for Large Scale Energy Storage in Decarbonised Grids. Report. 2009. Available online: https://www.iea.org/reports/prospects-for-large-scale-energy-storage-in-decarbonised-power-grids (accessed on 12 July 2022).
- Schossig, P. Thermal Energy Storage. In Proceedings of the 3rd International Renewable Energy Storage Conference, Berlin, Germany, 24–25 November 2008. [Google Scholar]
- Fairley, P. Available online: http://spectrum.ieee.org/energy/environment/largest-solar-thermal-storage-plant-to-start-up (accessed on 15 July 2022).
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Bazmi, A.A.; Zahedi, G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renew. Sustain. Energy Rev. 2011, 15, 3480–3500. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, C.; Li, F.; Bale, P.; Sun, H. Active Demand Response Using Shared Energy Storage for Household Energy Management. IEEE Trans. Smart Grid 2013, 4, 1888–1897. [Google Scholar] [CrossRef]
- Koohi-Kamali, S.; Tyagi, V.; Rahim, N.; Panwar, N.; Mokhlis, H. Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renew. Sustain. Energy Rev. 2013, 25, 135–165. [Google Scholar] [CrossRef]
- Yanine, F.F.; Sauma, E.E. Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency. Renew. Sustain. Energy Rev. 2013, 26, 60–95. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.-K.; Do, T.D.; Jung, J.-W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Lee, W.-J. Energy storage based optimal dispatch scheme for financial improvement and fluctuation mitigation on wind power generation. In Proceedings of the 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Muruganantham, B.; Gnanadass, R.; Padhy, N.P. Challenges with renewable energy sources and storage in practical distribution systems. Renew. Sustain. Energy Rev. 2017, 73, 125–134. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, Y.; Courcoubetis, C. Market Mechanisms for Energy Storage Planning and Operation in a Power Network. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3869–3874. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Thopil, M.; Bansal, R.; Zhang, L.; Sharma, G. A review of grid connected distributed generation using renewable energy sources in South Africa. Energy Strat. Rev. 2018, 21, 88–97. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Howlader, H.O.R.; Akter, H.; Saber, A.Y.; Mandal, P.; Krishna, N.; Senjyu, T. Independent Energy Storage Systems can Minimize Uncertainty of Profit for Retailers in ISO Market. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; pp. 584–589. [Google Scholar] [CrossRef]
- Kong, J.; Kim, S.T.; O Kang, B.; Jung, J. Determining the size of energy storage system to maximize the economic profit for photovoltaic and wind turbine generators in South Korea. Renew. Sustain. Energy Rev. 2019, 116, 109467. [Google Scholar] [CrossRef]
- Akbari-Dibavar, A.; Daneshvar, M.; Mohammadi-Ivatloo, B.; Zare, K.; Anvari-Moghaddam, A. Optimal Robust Energy Management of Microgrid with Fuel Cells, Hydrogen Energy Storage Units and Responsive Loads. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 55, 102052. [Google Scholar] [CrossRef]
- Liu, J.; Hu, C.; Kimber, A.; Wang, Z. Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications. J. Energy Storage 2020, 32, 101731. [Google Scholar] [CrossRef]
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- McIlwaine, N.; Foley, A.M.; Morrow, D.J.; Al Kez, D.; Zhang, C.; Lu, X.; Best, R.J. A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy 2021, 229, 120461. [Google Scholar] [CrossRef]
- Asija, D.; Viral, R. Chapter 13—Renewable energy integration in modern deregulated power system: Challenges, driving forces, and lessons for future road map. In Advances in Smart Grid Power System; Elsevier Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Aldaadi, M.; Al-Ismail, F.; Al-Awami, A.T.; Muqbel, A. A Coordinated Bidding Model for Wind Plant and Compressed Air Energy Storage Systems in the Energy and Ancillary Service Markets Using a Distributionally Robust Optimization Approach. IEEE Access 2021, 9, 148599–148610. [Google Scholar] [CrossRef]
- Hannan, M.; Mollik, M.; Al-Shetwi, A.Q.; Rahman, S.; Mansor, M.; Begum, R.; Muttaqi, K.; Dong, Z. Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations. J. Clean. Prod. 2022, 339, 130587. [Google Scholar] [CrossRef]
- Dhillon, J.; Kumar, A.; Singal, S. Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review. Renew. Sustain. Energy Rev. 2014, 30, 682–700. [Google Scholar] [CrossRef]
- Chinmoy, L.; Iniyan, S.; Goic, R. Modeling wind power investments, policies and social benefits for deregulated electricity market—A review. Appl. Energy 2019, 242, 364–377. [Google Scholar] [CrossRef]
- Komala, K.; Kumar, K.P.; Cherukuri, S.H.C. Storage and non-Storage Methods of Power balancing to counter Uncertainty in Hybrid Microgrids—A review. J. Energy Storage 2021, 36, 102348. [Google Scholar] [CrossRef]
- Lasemi, M.A.; Arabkoohsar, A.; Hajizadeh, A.; Mohammadi-Ivatloo, B. A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors. Renew. Sustain. Energy Rev. 2022, 160, 112320. [Google Scholar] [CrossRef]
- Singh, A.K.; Parida, S.K. A review on distributed generation allocation and planning in deregulated electricity market. Renew. Sustain. Energy Rev. 2018, 82, 4132–4141. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar–wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Ghadi, M.J.; Ghavidel, S.; Rajabi, A.; Azizivahed, A.; Li, L.; Zhang, J. A review on economic and technical operation of active distribution systems. Renew. Sustain. Energy Rev. 2019, 104, 38–53. [Google Scholar] [CrossRef]
- Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Renewable energy sources as a new participant in ancillary service markets. Energy Strat. Rev. 2017, 18, 106–120. [Google Scholar] [CrossRef]
- Kim, J.; Suharto, Y.; Daim, T.U. Evaluation of Electrical Energy Storage (EES) technologies for renewable energy: A case from the US Pacific Northwest. J. Energy Storage 2017, 11, 25–54. [Google Scholar] [CrossRef]
- Ghadi, M.J.; Rajabi, A.; Ghavidel, S.; Azizivahed, A.; Li, L.; Zhang, J. From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors. Appl. Energy 2019, 253, 113543. [Google Scholar] [CrossRef]
- Saboori, H.; Hemmati, R.; Ghiasi, S.M.S.; Dehghan, S. Energy storage planning in electric power distribution networks—A state-of-the-art review. Renew. Sustain. Energy Rev. 2017, 79, 1108–1121. [Google Scholar] [CrossRef]
- Zhou, B.; Li, W.; Chan, K.W.; Cao, Y.; Kuang, Y.; Liu, X.; Wang, X. Smart home energy management systems: Concept, configurations, and scheduling strategies. Renew. Sustain. Energy Rev. 2016, 61, 30–40. [Google Scholar] [CrossRef]
- Carreiro, A.M.; Jorge, H.M.; Antunes, C.H. Energy management systems aggregators: A literature survey. Renew. Sustain. Energy Rev. 2017, 73, 1160–1172. [Google Scholar] [CrossRef]
- Bhowmik, C.; Bhowmik, S.; Ray, A.; Pandey, K.M. Optimal green energy planning for sustainable development: A review. Renew. Sustain. Energy Rev. 2017, 71, 796–813. [Google Scholar] [CrossRef]
- Sundararagavan, S.; Baker, E. Evaluating energy storage technologies for wind power integration. Sol. Energy 2012, 86, 2707–2717. [Google Scholar] [CrossRef]
- Cong, R.-G. An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization. Renew. Sustain. Energy Rev. 2013, 17, 94–103. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Garde, R.; Fulli, G.; Kling, W.; Lopes, J.P. Characterisation of electrical energy storage technologies. Energy 2013, 53, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity price forecasting in deregulated markets: A review and evaluation. Int. J. Electr. Power Energy Syst. 2009, 31, 13–22. [Google Scholar] [CrossRef]
- Tang, L.; Che, P. Generation Scheduling Under a CO2 Emission Reduction Policy in the Deregulated Market. IEEE Trans. Eng. Manag. 2013, 60, 386–397. [Google Scholar] [CrossRef]
- Cedeño, E.B.; Arora, S. Integrated transmission and generation planning model in a deregulated environment. Front. Energy 2013, 7, 182–190. [Google Scholar] [CrossRef]
- Georgilakis, P.S. Genetic algorithm model for profit maximization of generating companies in deregulated electricity markets. Appl. Artif. Intell. Int. J. 2009, 23, 538–552. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Parastegari, M.; Hooshmand, R.-A.; Khodabakhshian, A.; Zare, A.-H. Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets. Int. J. Electr. Power Energy Syst. 2015, 64, 275–284. [Google Scholar] [CrossRef]
- Zahedi, A. A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid. Renew. Sustain. Energy Rev. 2011, 15, 4775–4779. [Google Scholar] [CrossRef]
- Poonpun, P.; Jewell, W.T. Analysis of the Cost per Kilowatt Hour to Store Electricity. IEEE Trans. Energy Convers. 2008, 23, 529–534. [Google Scholar] [CrossRef]
- Das, A.; Dawn, S.; Gope, S.; Ustun, T.S. A Risk Curtailment Strategy for Solar PV-Battery Integrated Competitive Power System. Electronics 2022, 11, 1251. [Google Scholar] [CrossRef]
- Frank, S.; Steponavice, I.; Rebennack, S. Optimal power flow: A bibliographic survey I—Formulations and deterministic methods. Energy Syst. 2012, 3, 221–258. [Google Scholar] [CrossRef]
- Selvaraju, R.K.; Somaskandan, G. Impact of energy storage units on load frequency control of deregulated power systems. Energy 2016, 97, 214–228. [Google Scholar] [CrossRef]
- Patil, G.S.; Mulla, A.; Dawn, S.; Ustun, T.S. Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market. Energies 2022, 15, 5290. [Google Scholar] [CrossRef]
- Patil, G.S.; Mulla, A.; Ustun, T.S. Impact of Wind Farm Integration on LMP in Deregulated Energy Markets. Sustainability 2022, 14, 4354. [Google Scholar] [CrossRef]
- Ustun, T.S.; Hussain, S.M.S.; Kikusato, H. IEC 61850-Based Communication Modeling of EV Charge-Discharge Management for Maximum PV Generation. IEEE Access 2019, 7, 4219–4231. [Google Scholar] [CrossRef]
- Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/power-by-fuel.html (accessed on 8 July 2022).
- Available online: https://www.iea.org/data-and-statistics/charts/investment-spending-in-electricity-networks-by-region-2016-2021 (accessed on 10 July 2022).
- Available online: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021 (accessed on 10 July 2021).
- Available online: https://ourworldindata.org/renewable-energy (accessed on 15 July 2022).
- Dawn, S.; Gope, S.; Das, S.S.; Ustun, T.S. Social Welfare Maximization of Competitive Congested Power Market Considering Wind Farm and Pumped Hydroelectric Storage System. Electronics 2021, 10, 2611. [Google Scholar] [CrossRef]
- Singh, N.K.; Koley, C.; Gope, S.; Dawn, S.; Ustun, T.S. An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm. Sustainability 2021, 13, 13542. [Google Scholar] [CrossRef]
- Available online: https://indiasmartgrid.org/reports/ISGF_Report_Energy_Storage_System_RoadmapforIndia_2019to2032_11July2019_Draft.pdf (accessed on 7 July 2022).
- Yadav, A.K.; Malik, H.; Hussain SM, S.; Ustun, T.S. Case Study of Grid-Connected Photovoltaic Power System Installed at Monthly Optimum Tilt Angles for Different Climatic Zones in India. IEEE Access 2021, 9, 60077–60088. [Google Scholar] [CrossRef]
- Hubble, A.H.; Ustun, T.S. Scaling renewable energy based microgrids in underserved communities: Latin America, South Asia, and Sub-Saharan Africa. In Proceedings of the 2016 IEEE PES PowerAfrica, Livingstone, Zambia, 28 June–2 July 2016; pp. 134–138. [Google Scholar]
- Hubble, A.H.; Ustun, T.S. Composition, placement, and economics of rural microgrids for ensuring sustainable development. Sustain. Energy Grids Netw. 2018, 13, 1–18. [Google Scholar]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Optimization of Two-Stage IPD-(1+I) Controllers for Frequency Regulation of Sustainable Energy Based Hybrid Microgrid Network. Electronics 2021, 10, 919. [Google Scholar] [CrossRef]
- Kumar, K.K.P.; Soren, N.; Latif, A.; Das, D.C.; Hussain, S.M.S.; Al-Durra, A.; Ustun, T.S. Day-Ahead DSM-Integrated Hybrid-Power-Management-Incorporated CEED of Solar Thermal/Wind/Wave/BESS System Using HFPSO. Sustainability 2022, 14, 1169. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid. Energies 2021, 14, 2418. [Google Scholar] [CrossRef]
- Ranjan, S.; Das, D.C.; Sinha, N.; Latif, A.; Hussain, S.M.S.; Ustun, T.S. Voltage stability assessment of isolated hybrid dish-stirling solar-thermal-diesel microgrid with STATCOM using mine blast algorithm. Electr. Power Syst. Res. 2021, 196, 107239. [Google Scholar] [CrossRef]
- Farooq, Z.; Rahman, A.; Hussain, S.M.S.; Ustun, T.S. Power Generation Control of Renewable Energy Based Hybrid Deregulated Power System. Energies 2022, 15, 517. [Google Scholar] [CrossRef]
- Ulutas, A.; Altas, I.H.; Onen, A.; Ustun, T.S. Neuro-Fuzzy-Based Model Predictive Energy Management for Grid Connected Microgrids. Electronics 2020, 9, 900. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Hannan, M.A.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Ker, P.J. Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks. Energies 2021, 14, 6507. [Google Scholar] [CrossRef]
- Hussain, I.; Das, D.C.; Sinha, N.; Latif, A.; Hussain, S.M.S.; Ustun, T.S. Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller. Energies 2020, 13, 5610. [Google Scholar] [CrossRef]
- Chauhan, A.; Upadhyay, S.; Khan, M.T.; Hussain, S.M.S.; Ustun, T.S. Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm. Sustainability 2021, 13, 8048. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid. Energies 2020, 13, 3446. [Google Scholar] [CrossRef]
- Nadeem, F.; Aftab, M.A.; Hussain, S.M.S.; Ali, I.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication. Energies 2019, 12, 2398. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Aftab, M.A.; Ali, I.; Hussain, S.M.S.; Ustun, T.S. Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV. Energies 2020, 13, 1295. [Google Scholar] [CrossRef]
- Nsonga, P.; Ustun, T.S. Integration of communication standards in Electrical Vehicle Ad-Hoc Networks for smartgrid support. In Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), Balaclava, Mauritius, 3–6 August 2016; pp. 106–111. [Google Scholar]
- Hashimoto, J.; Ustun, T.S.; Otani, K. Smart inverter functionality testing for battery energy storage systems. Smart Grid Renew. Energy 2017, 8, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Ustun, T.S.; Aoto, Y.; Hashimoto, J.; Otani, K. Optimal PV-INV Capacity Ratio for Residential Smart Inverters Operating under Different Control Modes. IEEE Access 2020, 8, 116078–116089. [Google Scholar] [CrossRef]
- Ustun, T.S.; Hashimoto, J.; Otani, K. Impact of Smart Inverters on Feeder Hosting Capacity of Distribution Networks. IEEE Access 2019, 7, 163526–163536. [Google Scholar] [CrossRef]
- Ustun, T.S.; Sugahara, S.; Suzuki, M.; Hashimoto, J.; Otani, K. Power Hardware in-the-Loop Testing to Analyze Fault Behavior of Smart Inverters in Distribution Networks. Sustainability 2020, 12, 9365. [Google Scholar] [CrossRef]
- Available online: https://www.cecp-eu.in/uploads/documents/events/Webinar_on_Energy_Storage_ISGF.pdf (accessed on 15 July 2022).
- Moore, J.; Shabani, B. A Critical Study of Stationary Energy Storage Polices in Australia in an International Context: The Role of Hydrogen and Battery Technologies. Energies 2016, 9, 674. [Google Scholar] [CrossRef]
- Felsmann, B.; Mezősi, A.; Szabó, L. Market versus Bureaucracy—Price Regulation in the Electricity Retail Sector. In Proceedings of the Importance of Kornai’s Research Today, Budapest, Hungary, 21–22 February 2018. [Google Scholar]
- Tawalbeh, M.; Murtaza, S.Z.; Al-Othman, A.; Alami, A.H.; Singh, K.; Olabi, A.G. Ammonia: A versatile candidate for the use in energy storage systems. Renew. Energy 2022, 194, 955–977. [Google Scholar] [CrossRef]
- Kucur, G.; Tur, M.R.; Bayindir, R.; Shahinzadeh, H.; Gharehpetian, G.B. A Review of Emerging Cutting-Edge Energy Storage Technologies for Smart Grids Purposes. In Proceedings of the 2022 9th Iranian Conference on Renewable Energy & Distributed Generation, Mashhad, Iran, 23–24 February 2022. [Google Scholar] [CrossRef]
- Asri, L.I.M.; Ariffin, W.N.S.F.W.; Zain, A.S.M.; Nordin, J.; Saad, N.S.C. Comparative Study of Energy Storage Systems (ESSs). J. Phys. Conf. Ser. 2021, 1962, 012035. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- David, B.R.; Spencer, S.; Miller, J.; Almahmoud, S.; Jouhara, H. Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system. Int. J. Thermofluids 2021, 12, 100116. [Google Scholar] [CrossRef]
Region | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
USA | 63.1 | 65 | 66 | 71 | 75.8 | 77.1 |
China | 86.9 | 83.7 | 83.2 | 76.6 | 70.7 | 82.6 |
Emerging market and developing economies | 93.9 | 88.2 | 81.1 | 63.5 | 53.5 | 60 |
Europe | 50 | 48.7 | 49.5 | 48.5 | 51.8 | 56.7 |
Rest of the world | 17 | 17.5 | 15.9 | 12.6 | 10.8 | 12.6 |
System | Max. Power Rating (MW) | Efficiency (%) | Discharge Time | Cost/KW (USD) | Cost/KWh (USD) | Energy Density (Wh/L) |
---|---|---|---|---|---|---|
PHS | 3000 | 70–85 | 4 h–16 h | 600–2000 | 5–100 | 0.2–2 |
CAES | 1000 | 40–70 | 2 h–30 h | 400–800 | 2–50 | 2–6 |
FES | 20 | 70–95 | sec–mins | 250–350 | 1000–5000 | 20–80 |
Lead-acid | 100 | 80–90 | 1 min–8 h | 300–600 | 200–400 | 50–80 |
NiCd/NiMH | 40 | sec–hours | 500–1500 | 800–1500 | 60–150 | |
Li-ion | 100 | 85–95 | 1 min–8 h | 1200–4000 | 600–2500 | 200–400 |
Metal-air | 0.01 | 50 | secs–day | 100–250 | 10–60 | 500–10,000 |
Sodium-sulfur | 0.05–8 | 75–90 | sec–hours | 1000–3000 | 300–500 | 150–250 |
RFB/HFB | 100 | 60–85 | hours | 700–2500 | 150–1000 | 20–70 |
H2 | 100 | 25–45 | min–week | 10 | 600 | |
Fuel Cell | 50 | 60–80 | secs–day | 10,000 | 500–3000 | |
SMES | 10 MW | 95 | millisec–secs | 200–300 | 1000–10,000 | 0.2–2.5 |
Thermal | 150 | 80–90 | hours | 200–300 | 30–60 | 70–210 |
System | Life Time/Cycles | Environmental Impact | Description of Impact |
---|---|---|---|
PHS | 30–60 years | -ve | Cutting trees and landscapes for reservoirs |
CAES | 20–40 years | -ve | Remains from fossil fuel |
FES | 20,000–100,000 | Negligible | |
Lead-acid | 6–40 years | -ve | Toxic residues |
NiCd/NiMH | 10–20 years | -ve | Toxic residues |
Li-ion | 1000–10,000 | -ve | Toxic residues |
Metal-air | 100–300 | Very small | Slight residues |
Sodium-sulphur | 10–15 years | -ve | Toxic residues |
RFB/HFB | 12,000–14,000 | -ve | Toxic residues |
H2 | 5–30 years | Yes | Emission of hydrogen in atmosphere can create disturb in distribution of methane and ozone; thereby causing imbalance. |
Fuel Cell | 5–15 years | -ve | Remains from fossil fuel |
SMES | 20 years | -ve | High magnetic field |
Thermal | 30 years | Small | Releasing charge into atmosphere |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, M.R.; Dawn, S.; Saha, P.K.; Basu, J.B.; Ustun, T.S. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries 2022, 8, 124. https://doi.org/10.3390/batteries8090124
Chakraborty MR, Dawn S, Saha PK, Basu JB, Ustun TS. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries. 2022; 8(9):124. https://doi.org/10.3390/batteries8090124
Chicago/Turabian StyleChakraborty, Mitul Ranjan, Subhojit Dawn, Pradip Kumar Saha, Jayanta Bhusan Basu, and Taha Selim Ustun. 2022. "A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems" Batteries 8, no. 9: 124. https://doi.org/10.3390/batteries8090124
APA StyleChakraborty, M. R., Dawn, S., Saha, P. K., Basu, J. B., & Ustun, T. S. (2022). A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries, 8(9), 124. https://doi.org/10.3390/batteries8090124