Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review
Abstract
:1. Introduction
2. Biomass Carbon Utilization in Li–Se Batteries
3. Biomass Carbon Utilization in Na–Se Batteries
4. Biomass Carbon Utilization in K–Se Batteries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Yang, J.; Liu, D.; Huang, Y.; Lee, Y. Bio-Derived Materials Achieving High Performance in Alkali Metal-Chalcogen Batteries. Adv. Funct. Mater. 2020, 31, 2008354. [Google Scholar] [CrossRef]
- Feng, C.; Huang, X.L.; Li, Y.; Wang, Y.; Li, C.; Qiu, W.; Zhang, S.; Liu, H.; Zhang, Y.; Liu, H.K.; et al. Towards rechargeable Na-SexSy batteries: From fundamental insights to improvement strategies. Chem. Eng. J. 2022, 442, 136189. [Google Scholar] [CrossRef]
- Gu, X.; Tang, T.; Liu, X.; Hou, Y. Rechargeable metal batteries based on selenium cathodes: Progress, challenges and perspectives. J. Mater. Chem. A 2019, 7, 11566–11583. [Google Scholar] [CrossRef]
- Huang, X.; Sun, J.; Wang, L.; Tong, X.; Dou, S.X.; Wang, Z.M. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries. Small 2021, 17, e2004369. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhou, C.; He, W.; Sun, S.; Chueh, Y.L.; Wang, Z.M.; Liu, H.K.; Dou, S.X. An Emerging Energy Storage System: Advanced Na-Se Batteries. ACS Nano 2021, 15, 5876–5903. [Google Scholar] [CrossRef]
- Gu, X.; Lai, C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Stor. Mater. 2019, 23, 190–224. [Google Scholar] [CrossRef]
- Zhou, L.; Danilov, D.L.; Eichel, R.A.; Notten, P.H.L. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Adv. Energy Mater. 2020, 11, 2001304. [Google Scholar] [CrossRef]
- Yang, T.; Niu, Y.; Liu, Q.; Xu, M. Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review. Nano Mater. Sci. 2022, in press. [CrossRef]
- Gu, X.; Deng, L.; Ren, X. Metal Atom-Decorated Carbon Nanomaterials for Enhancing Li-S/Se Batteries Performances: A Mini Review. Front. Energy Res. 2021, 9, 626596. [Google Scholar] [CrossRef]
- Kim, J.K.; Kang, Y.C. Encapsulation of Se into Hierarchically Porous Carbon Microspheres with Optimized Pore Structure for Advanced Na-Se and K-Se Batteries. ACS Nano 2020, 14, 13203–13216. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, M.; Xu, R.; Zeng, S.; Yang, H.; Ye, S.; Liu, F.; Wu, X.; Yu, Y. CNT Interwoven Nitrogen and Oxygen Dual-Doped Porous Carbon Nanosheets as Free-Standing Electrodes for High-Performance Na-Se and K-Se Flexible Batteries. Adv. Mater. 2018, 30, e1805234. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, J.; Kim, J.T.; Fu, J.; Duan, H.; Chen, N.; Li, R.; Zhao, S.; Wang, J.; Huang, H.; et al. Highly Stable Halide-Electrolyte-Based All-Solid-State Li-Se Batteries. Adv. Mater. 2022, 34, e2200856. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.C.; Nguyen, C.; Barlow, A.J.; Cherepanov, P.V.; Forsyth, M.; Howlett, P.C.; MacFarlane, D.R. A safe Li–Se battery in an ionic liquid-based electrolyte operating at 25–70 °C by using a N,S,O tri-doped mesoporous carbon host material. Sustain. Energy Fuels 2020, 4, 2322–2332. [Google Scholar] [CrossRef]
- Zuo, T.T.; Shi, Y.; Wu, X.W.; Wang, P.F.; Wang, S.H.; Yin, Y.X.; Wang, W.P.; Ma, Q.; Zeng, X.X.; Ye, H.; et al. Constructing a Stable Lithium Metal-Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Appl. Mater. Interf. 2018, 10, 30065–30070. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, X.; Xiong, P.; Zhang, J.; Song, J.; Yan, K.; Gao, X.; Liu, H.; Wang, G. Interface Engineering of MXene Composite Separator for High-Performance Li–Se and Na–Se Batteries. Adv. Energy Mater. 2020, 10, 2000446. [Google Scholar] [CrossRef]
- Gu, X.; Xin, L.; Li, Y.; Dong, F.; Fu, M.; Hou, Y. Highly Reversible Li-Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer. Nano Micro Lett. 2018, 10, 59. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.L.; Yang, Y.L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.G. Biomass-Derived Carbon for High-Performance Batteries: From Structure to Properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Li, G.-D.; Chen, J.-S. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. Mater. Lett. 2007, 61, 5209–5212. [Google Scholar] [CrossRef]
- Stephan, A.M.; Kumar, T.P.; Ramesh, R.; Thomas, S.; Jeong, S.K.; Nahm, K.S. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater. Sci. Eng. A 2006, 430, 132–137. [Google Scholar] [CrossRef]
- Li, J.; Qin, F.; Zhang, L.; Zhang, K.; Li, Q.; Lai, Y.; Zhang, Z.; Fang, J. Mesoporous carbon from biomass: One-pot synthesis and application for Li–S batteries. J. Mater. Chem. A 2014, 2, 13916–13922. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Z.; Zhang, X.; Ren, G.; Lai, Y.; Liu, Y.; Li, J. Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 2015, 84, 399–408. [Google Scholar] [CrossRef]
- Schipper, F.; Vizintin, A.; Ren, J.; Dominko, R.; Fellinger, T.P. Biomass-Derived Heteroatom-Doped Carbon Aerogels from a Salt Melt Sol-Gel Synthesis and their Performance in Li-S Batteries. ChemSusChem 2015, 8, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, S.; Zhang, J.; Zafar, Z.A.; Ji, S.; Huang, T.; Anderson, J.A.; Zhang, Z.; Huang, Y. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. Chin. Mater. 2016, 59, 389–407. [Google Scholar] [CrossRef]
- Selvan, R.K.; Zhu, P.; Yan, C.; Zhu, J.; Dirican, M.; Shanmugavani, A.; Lee, Y.S.; Zhang, X. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J. Colloid Interf. Sci. 2018, 513, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Guo, J.; Tao, J.; Li, X.; Zheng, W.; He, G.; Dai, Y. Low-Cost Biomass-Gel-Induced Conductive Polymer Networks for High-Efficiency Polysulfide Immobilization and Catalytic Conversion in Li–S Batteries. ACS Appl. Energy Mater. 2022, 5, 2308–2317. [Google Scholar] [CrossRef]
- Tian, X.; Yan, C.; Kang, J.; Yang, X.; Li, Q.; Yan, J.; Deng, N.; Cheng, B.; Kang, W. Working Mechanisms and Structure Engineering of Renewable Biomass-Derived Materials for Advanced Lithium-Sulfur Batteries: A Review. ChemElectroChem 2022, 9, e202100995. [Google Scholar] [CrossRef]
- Benítez, A.; Amaro-Gahete, J.; Chien, Y.-C.; Caballero, Á.; Morales, J.; Brandell, D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew. Sustain. Energy Rev. 2022, 154, 111783. [Google Scholar] [CrossRef]
- Sun, K.; Zhao, H.; Zhang, S.; Yao, J.; Xu, J. Selenium/pomelo peel-derived carbon nanocomposite as advanced cathode for lithium-selenium batteries. Ionics 2015, 21, 2477–2484. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, F.; Kang, W.; Shen, Q. Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries. Carbon 2015, 95, 354–363. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, D.; Yang, Z.; Yu, F.; Su, Y.; Wang, D.; Shen, Q. Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode. Carbon 2017, 122, 547–555. [Google Scholar] [CrossRef]
- Zhao, P.; Shiraz, M.H.A.; Zhu, H.; Liu, Y.; Tao, L.; Liu, J. Hierarchically porous carbon from waste coffee grounds for high-performance Li–Se batteries. Electrochim. Acta 2019, 325, 134931. [Google Scholar] [CrossRef]
- Yang, Z.; Jia, D.; Wu, Y.; Song, D.; Sun, X.; Wang, C.; Yang, L.; Zhang, Y.; Gao, J.; Ohsaka, T.; et al. Novel lithium-chalcogenide batteries combining S, Se and C characteristics supported by chitosan-derived carbon intertwined with CNTs. Chem. Eng. J. 2022, 427, 131790. [Google Scholar] [CrossRef]
- Yangdan, L.; Yichuan, G.; Yang, T.; Haichao, T.; Zhizhen, Y.; Jianguo, L. Porous carbon derived from corncob as cathode host for Li–Se battery. Ionics 2022, 28, 2593–2601. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Jing, P.; Guo, Y.; Zhang, Y.; Wei, Y.; Wang, Q.; Zhang, Y.; Wu, H. Bioderived carbon fiber conductive networks with inlaid electrocatalysts as an ultralight freestanding interlayer for working Li–SeS2 pouch cells. Carbon 2022, 189, 10–20. [Google Scholar] [CrossRef]
- Luo, C.; Xu, Y.; Zhu, Y.; Liu, Y.; Zheng, S.; Liu, Y.; Langrock, A.; Wang, C. Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity. ACS Nano 2013, 7, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tai, Z.; Zhang, Q.; Wang, H.; Pang, W.K.; Liu, H.K.; Konstantinov, K.; Guo, Z. A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy 2017, 35, 36–43. [Google Scholar] [CrossRef]
- Huang, X.L.; Guo, Z.; Dou, S.X.; Wang, Z.M. Rechargeable Potassium–Selenium Batteries. Adv. Funct. Mater. 2021, 31, 2102326. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Liu, J. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J. Energy Chem. 2019, 34, 171–185. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, T.; Liu, Y.; Nai, J.; Wang, Y.; Zhang, W.; Tao, X. A review of biomass materials for advanced lithium-sulfur batteries. Chem. Sci. 2019, 10, 7484–7495. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Tao, X.; Liang, Y.; Yang, S.J.; Huang, J.Q.; Yuan, T.Q.; Titirici, M.M.; Zhang, Q. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat 2020, 2, e12019. [Google Scholar] [CrossRef]
- Jin, C.; Nai, J.; Sheng, O.; Yuan, H.; Zhang, W.; Tao, X.; Lou, X.W. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 2021, 14, 1326–1379. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, X.; Liu, A.; Zhu, H.; Ma, T. Recent progress in biomass-derived carbon materials used for secondary batteries. Sustain. Energy Fuels 2021, 5, 3017–3038. [Google Scholar] [CrossRef]
- Wang, P.; Gong, Z.; Ye, K.; Gao, Y.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. The stable lithium metal cell with two-electrode biomass carbon. Electrochim. Acta 2020, 356, 136824. [Google Scholar] [CrossRef]
- Long, W.; Fang, B.; Ignaszak, A.; Wu, Z.; Wang, Y.J.; Wilkinson, D. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 2017, 46, 7176–7190. [Google Scholar] [CrossRef]
- Jia, M.; Lu, S.; Chen, Y.; Liu, T.; Han, J.; Shen, B.; Wu, X.; Bao, S.-J.; Jiang, J.; Xu, M. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries. J. Power Sources 2017, 367, 17–23. [Google Scholar] [CrossRef]
- Gu, X.; Tong, C.-J.; Lai, C.; Qiu, J.; Huang, X.; Yang, W.; Wen, B.; Liu, L.-M.; Hou, Y.; Zhang, S. Porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 2015, 3, 16670–16678. [Google Scholar] [CrossRef]
- Gu, X.; Li, H.; Wen, H.; Zhou, Y.; Kang, H.; Liao, H.; Gao, M.; Wang, Y.; Deng, L.; Yi, X.; et al. From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries. J. Mater. Sci. 2019, 55, 1136–1147. [Google Scholar] [CrossRef]
- Ai, W.; Li, J.; Du, Z.; Zou, C.; Du, H.; Xu, X.; Chen, Y.; Zhang, H.; Zhao, J.; Li, C.; et al. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Res. 2018, 11, 4562–4573. [Google Scholar] [CrossRef]
- Park, S.-K.; Lee, J.-K.; Kang, Y.C. Yolk-Shell Structured Assembly of Bamboo-Like Nitrogen-Doped Carbon Nanotubes Embedded with Co Nanocrystals and Their Application as Cathode Material for Li-S Batteries. Adv. Funct. Mater. 2018, 28, 1705264. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, S.; Muheiyati, H.; Zhai, Y.; Li, C.; Ding, X.; Wang, L.; Wang, D.; Xu, L.; He, Y.; et al. Double-Shelled Ni–Fe–P/N-Doped Carbon Nanobox Derived from a Prussian Blue Analogue as an Electrode Material for K-Ion Batteries and Li–S Batteries. ACS Energy Lett. 2019, 4, 1496–1504. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, W.; Feng, Z.; Wu, F.; Wei, D.; Xi, B.; Xiong, S. P-doped BN nanosheets decorated graphene as the functional interlayer for Li–S batteries. J. Energy Chem. 2019, 39, 54–60. [Google Scholar] [CrossRef]
- Wei, L.; Li, W.; Zhao, T.; Zhang, N.; Li, L.; Wu, F.; Chen, R. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries. Chem. Commun. 2020, 56, 3007–3010. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhao, X.; Li, B.; Shu, H.; Luo, L.; Xia, W.; Chen, M.; Zeng, P.; Yang, X.; Gao, P.; et al. NiMoO4 Nanosheets Anchored on N-S Doped Carbon Clothes with Hierarchical Structure as a Bidirectional Catalyst toward Accelerating Polysulfides Conversion for Li-S Battery. Adv. Funct. Mater. 2021, 31, 2101285. [Google Scholar] [CrossRef]
- Gu, X.; Tong, C.J.; Rehman, S.; Liu, L.M.; Hou, Y.; Zhang, S. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries. ACS Appl. Mater. Interf. 2016, 8, 15991–16001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Luo, J.; Hu, Z. Hierarchical porous N,O Co-doped carbon/Se composite derived from hydrothermal treated chitosan as Li–Se battery cathode. Micro Nano Lett. 2018, 13, 1386–1389. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, H.; Zhang, H.; Tong, L.; Mitlin, D. Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries. Adv. Energy Mater. 2017, 8, 1701918. [Google Scholar] [CrossRef]
- Qiu, R.; Fei, R.; Zhang, T.; Liu, X.; Jin, J.; Fan, H.; Wang, R.; He, B.; Gong, Y.; Wang, H. Biomass-derived, 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries. Electrochim. Acta 2020, 356, 136832. [Google Scholar] [CrossRef]
- Jia, D.; Yang, Z.; Zhang, H.; Liu, F.; Shen, Q. High performance of selenium cathode by encapsulating selenium into the micropores of chitosan-derived porous carbon framework. J. Alloys Compd. 2018, 746, 27–35. [Google Scholar] [CrossRef]
- Hoseini, A.H.A.; Shiraz, M.H.A.; Tao, L.; Lu, W.; Arjmand, M.; Liu, J. Synthesis of Soybean-derived Porous Carbon as Selenium Host for High-Performance Lithium-Selenium Batteries. Electrochim. Acta 2022, 44, 140954. [Google Scholar] [CrossRef]
- Abouimrane, A.; Dambournet, D.; Chapman, K.W.; Chupas, P.J.; Weng, W.; Amine, K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 2012, 134, 4505–4508. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, L.; Qiu, M.; Zhang, N. Amorphous Se Restrained by Biomass-Derived Defective Carbon for Stable Na–Se Batteries. ACS Appl. Energy Mater. 2021, 4, 7219–7225. [Google Scholar] [CrossRef]
- Guo, B.; Mi, H.; Zhang, P.; Ren, X.; Li, Y. Free-Standing Selenium Impregnated Carbonized Leaf Cathodes for High-Performance Sodium-Selenium Batteries. Nanoscale Res. Lett. 2019, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, Y.; Su, L.; Cen, W.; Wang, Q.; Xiao, D. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with excellent lithium and sodium storage behavior. J. Colloid Interf. Sci. 2022, 608, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, H.; Zhao, X.; Wang, X.; Miao, Y.; Cheng, L.; Wang, C.; Wang, L.; Yue, H.; Zhang, D. Porous Bamboo-Derived Carbon as Selenium Host for Advanced Lithium/Sodium–Selenium Batteries. Energy Technol. 2020, 8, 1901445. [Google Scholar] [CrossRef]
- Cai, R.; Chen, X.; Liu, P.; Chen, T.; Liu, W.; Fan, X.; Ouyang, B.; Liu, K. A Novel Cathode Based on Selenium Confined in Biomass Carbon and Graphene Oxide for Potassium–Selenium Battery. ChemElectroChem 2020, 7, 4477–4483. [Google Scholar] [CrossRef]
Typed of Biochar | Role in Li–Se Batteries | Synthesis Method | Selenium Content in the Electrode (wt%) | Active Materials Unit Mass in the Whole Electrode (mg cm−2) | Cycling Performance Based on Pure Se (mA∙h∙g−1@Cycles) | Discharge Current (C) | Ref. |
---|---|---|---|---|---|---|---|
Pomelo peel biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 650 °C | 37.6 | - | 490@100 | 1 | [28] |
Pomelo peel sponge-derived biochar | Enhance electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 450–800 °C | 48 | 2.9 ± 0.2 | 466.8@300 | 0.2 | [29] |
Lignin biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 700 °C | 44.56 | 2.4 ± 0.3 | 453.1@300 | 0.5 | [30] |
Waste coffee-grounds biochar | Enhancing electrode conductivity; encapsulating selenium; accommodatingg volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with KOH in vacuum at 700–900 °C | 40 | 1.0–1.2 | 500@400 | 0.5 | [31] |
Corncob biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 500–800 °C | 47.86 | 1.5 | 123.4@500 | 1 | [33] |
Coconut shells biochar | Accelerating Li+ transportation; encapsulating selenium; eccommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 at 600 °C and then with KOH at 700 °C | 42.4 | 0.6 | 317@900 | 2 | [45] |
Loofah sponge biochar | Enhancing electrode conductivity; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 500–900 °C | 70 | 2.52 | 350@1000 | 2 | [54] |
Chitosan biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Hydrothermal carbonization at 210 °C and then Carbonized with N2 and KOH at 600 °C | 35 | 1.20 | 446.9@100 | 0.24 | [55] |
Nanocellulose biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized cellulose–silica at 1000 °C | 63 | - | 475@300 | 0.2 | [56] |
Cotton fiber biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with Ar and KOH at 800 °C | 40 | - | 310@2500 | 2.96 | [57] |
Chitosan biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KHCO3 at 700 °C | 40.16 | 2.9 ± 0.2 | 633.9@100 | 0.1 | [58] |
Soybean biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 500–700 °C | 40 | 1.52–1.66 | 368@500 | 1 | [59] |
Typed of Biochar | Role in Na–Se Batteries | Synthesis Method | Selenium Content in the Electrode (wt%) | Active Materials Unit Mass in the Whole Electrode (mg cm−2) | Cycling Performance Based on Pure Se (mA∙h∙g−1@Cycles) | Discharge Current (C) | Ref. |
---|---|---|---|---|---|---|---|
Poplar catkin biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with NH3 and KOH at 750 °C | 40.64 | 1.0–2.5 | 378.7@1600 | 1.48 | [61] |
Cotton fiber biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with Ar and KOH at 800 °C | 40 | - | 446@500 | 2.96 | [57] |
Leaf biochar | As a free-standing matrix for encapsulating Se; enhancing electrode conductivity; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 600–800 °C | 47 | - | 300@500 | 2.96 | [62] |
Chestnut inner shells biochar | As a 3D flexible matrix for encapsulating Se; enhancing electrode conductivity; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with NH3 and KOH at 700 °C | 60 | 1.5 | 400@2000 | 1.48 | [11] |
Sweet potato biochar | Enhancing electrode conductivity; encapsulating selenium; eccommodating volume expansion; physically and chemically confining the polyselenide shuttle phenomenon | Carbonized with Ar and KOH at 700 °C | 59.44 | 1.5 | 412@500 | 0.2 | [63] |
Bamboo biochar | Enhancing electrode conductivity; encapsulating selenium; accommodating volume expansion; physically confining the polyselenide shuttle phenomenon | Carbonized with N2 and KOH at 700 °C | 40 | 1.0 | 330@500 | 0.5 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Ma, S.; Dai, J.; Lin, J.; Zhou, X.; Chen, T.; Gu, X. Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review. Batteries 2022, 8, 123. https://doi.org/10.3390/batteries8090123
Du Y, Ma S, Dai J, Lin J, Zhou X, Chen T, Gu X. Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review. Batteries. 2022; 8(9):123. https://doi.org/10.3390/batteries8090123
Chicago/Turabian StyleDu, Yixun, Shuang Ma, Jinhang Dai, Juan Lin, Xia Zhou, Tiezhu Chen, and Xingxing Gu. 2022. "Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review" Batteries 8, no. 9: 123. https://doi.org/10.3390/batteries8090123
APA StyleDu, Y., Ma, S., Dai, J., Lin, J., Zhou, X., Chen, T., & Gu, X. (2022). Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review. Batteries, 8(9), 123. https://doi.org/10.3390/batteries8090123