Influence of the Ni Catalyst on the Properties of the Si-C Composite Material for LIB Anodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Formation of Composites
3.2. Scanning Electron Microscopy
3.3. X-ray Diffraction
3.4. Raman Scattering
3.5. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manj, R.Z.A.; Zhang, F.; Rehman, W.U.; Luo, W.; Yang, J. Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chem. Eng. J. 2020, 385, 123821. [Google Scholar] [CrossRef]
- Obravac, M.N. Review Article Si-alloy negative electrodes for Li-ion batteries. Curr. Opin. Electrochem. 2018, 9, 8–17. [Google Scholar] [CrossRef]
- Li, P.; Kim, H.; Myung, S.-T.; Sun, Y.-K. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 2021, 35, 550–576. [Google Scholar] [CrossRef]
- Du, F.-H.; Wang, K.-X.; Chen, J.-S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Liu, X.; Luo, Y.; Zhou, L.; Kim, J.-K. Nanosilicon anodes for high performance rechargeable batteries. Prog. Mater. Sci. 2017, 90, 1–44. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Acc. Chem. Res. 2017, 50, 2895–2905. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, D. Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries. R. Soc. Open Sci. 2018, 5, 172370. [Google Scholar] [CrossRef] [Green Version]
- Astrova, E.V.; Ulin, V.P.; Parfeneva, A.V.; Voronkov, V.B. Fluorocarbon Carbonization of Nanocrystalline Silicon. Tech. Phys. Lett. 2019, 45, 664–667. [Google Scholar] [CrossRef]
- Astrova, E.; Ulin, V.; Parfeneva, A.; Rumyantsev, A.; Voronkov, V.; Nashchekin, A.; Nevedomskiy, V.; Koshtyal, Y.; Tomkovich, M. Silicon–carbon nanocomposites produced by reduction of carbon monofluoride by silicon. J. Alloys Compd. 2020, 826, 154242. [Google Scholar] [CrossRef]
- Lozhkina, D.A.; Astrova, E.V.; Likhachev, A.I.; Parfeneva, A.V.; Rumyantsev, A.M.; Smirnov, A.N.; Ulin, V.P. Silicon Monoxide Carbonized by Fluorocarbon As a Composite Material for Anodes of Lithium-Ion Batteries. Tech. Phys. 2021, 66, 1228–1240. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, J.-G.; Wang, X.; Chui, Y.-S.; Wu, Q.-H.; Chen, X.; Zhang, W. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 2013, 5, 8689–8694. [Google Scholar] [CrossRef] [PubMed]
- Ubbelonde, A.R.; Lewis, F.A. Graphite and Its Crystal Compounds; Oxford at the Clarendon Press: London, UK, 1960; pp. 9–47. [Google Scholar]
- Astrova, E.V.; Parfeneva, A.V.; Rumyantsev, A.M.; Ulin, V.P.; Baidakova, M.V.; Nevedomskiy, V.N.; Nashchekin, A.V. The Effect of Thermal Treatment on Properties of Composite Silicon–Carbon Anodes for Lithium-Ion Batteries. Tech. Phys. Lett. 2020, 46, 114–117. [Google Scholar] [CrossRef]
- Sinclair, R.; Itoh, T.; Chin, R. In Situ TEM Studies of Metal–Carbon Reactions. Microsc. Microanal. 2002, 8, 288–304. [Google Scholar] [CrossRef]
- Wang, K.; Cao, Y.; Wang, X.; Kharel, P.R.; Gibbons, W.; Luo, B.; Gu, Z.; Fan, Q.; Metzger, L. Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors. Energy 2016, 101, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.; Danks, A.E.; Bourgeois, L.; Schnepp, Z. Iron-catalyzed graphitization of biomass. Green Chem. 2015, 17, 551–556. [Google Scholar] [CrossRef]
- Li, S.S.; Wang, J.K.; Zhu, Q.; Zhao, X.W.; Zhang, H.J. Fabrication of Graphitic Carbon Spheres via a Hydrothermal Carbonization Combined Catalytic Graphitization Method Using Cobalt as Catalysts. Solid State Phenom. 2018, 281, 807–812. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Gurvich, L.V.; Veits, I.V.; Medvedev, V.A. Termodinamicheskie Svoistva Individual’nykh Veshchestv; Nauka: Moscow, Russia, 1978; Volume 1, Book 1. (In Russian) [Google Scholar]
- Destyorini, F.; Irmawati, Y.; Hardiansyah, A.; Widodo, H.; Yahya, I.N.D.; Indayaningsih, N.; Yudianti, R.; Hsu, Y.-I.; Uyama, H. Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitisation. Eng. Sci. Technol. Int. J. 2020, 24, 514–523. [Google Scholar] [CrossRef]
- Nakashima, S. Harima, H. Raman Investigation of SiC Polytypes. Phys. Stat. Sol. (A) 1997, 162, 39–64. [Google Scholar] [CrossRef]
- Qiang, X.; Li, H.; Zhang, Y.; Tian, S.; Wei, J. Synthesis and Raman scattering of SiC nanowires decorated with SiC polycrystalline nanoparticles. Mater. Lett. 2013, 107, 315–317. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: From Graphene to Amorphous Carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Vinogradov, A.Y.; Grudinkin, S.A.; Besedina, N.A.; Koniakhin, S.V.; Rabchinskii, M.K.; Eidelman, E.D.; Golubev, V.G. Structure and Properties of Thin Graphite-Like Films Produced by Magnetron-Assisted Sputtering. Semiconductors 2018, 52, 914–920. [Google Scholar] [CrossRef]
- Maslova, O.A.; Ammar, M.R.; Guimbretière, G.; Rouzaud, J.-N.; Simon, P. Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys. Rev. B 2012, 86, 134205. [Google Scholar] [CrossRef]
- Oh, J.H.; Jo, M.S.; Jeong, S.M.; Cho, C.; Kang, Y.C.; Cho, J.S. New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries. J. Ind. Eng. Chem. 2019, 77, 76–82. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, W.; Wu, H.; Chen, Z.; Li, H.; Zhang, L.Y. Holey graphene confined hollow nickel oxide nanocrystals for lithium ion storage. Scr. Mater. 2020, 178, 187–192. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Q.; Zhang, M.; Li, M.; Hu, J.; Yuan, G. Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries. J. Alloys Compd. 2020, 822, 153718. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, J.; Qin, R.; Hao, Q.; Xu, C.; Hou, J. Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries. Int. J. Hydrogen Energy 2019, 44, 1078–1087. [Google Scholar] [CrossRef]
No. | Qch, mAh/g | Qdch, mAh/g | Efficiency,% | ∆Q50mA/g/Q25mA/g, % | ∆Q100mA/g/Q25mA/g, % |
---|---|---|---|---|---|
as carbonized | 1290.8 | 677.7 | 52.5 | 10 | 23 |
600 °C Ni | 1532.3 | 832.7 | 54.3 | 6 | 17 |
800 °C Ni | 814.5 | 275.9 | 33.9 | 16 | 36 |
1100 °C Ni | 405.1 | 106.4 | 26.3 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozhkina, D.A.; Ulin, V.P.; Kompan, M.E.; Rumyantsev, A.M.; Kondrashkova, I.S.; Krasilin, A.A.; Astrova, E.V. Influence of the Ni Catalyst on the Properties of the Si-C Composite Material for LIB Anodes. Batteries 2022, 8, 102. https://doi.org/10.3390/batteries8080102
Lozhkina DA, Ulin VP, Kompan ME, Rumyantsev AM, Kondrashkova IS, Krasilin AA, Astrova EV. Influence of the Ni Catalyst on the Properties of the Si-C Composite Material for LIB Anodes. Batteries. 2022; 8(8):102. https://doi.org/10.3390/batteries8080102
Chicago/Turabian StyleLozhkina, Darina A., Vladimir P. Ulin, Mikhail E. Kompan, Aleksander M. Rumyantsev, Irina S. Kondrashkova, Andrei A. Krasilin, and Ekaterina V. Astrova. 2022. "Influence of the Ni Catalyst on the Properties of the Si-C Composite Material for LIB Anodes" Batteries 8, no. 8: 102. https://doi.org/10.3390/batteries8080102
APA StyleLozhkina, D. A., Ulin, V. P., Kompan, M. E., Rumyantsev, A. M., Kondrashkova, I. S., Krasilin, A. A., & Astrova, E. V. (2022). Influence of the Ni Catalyst on the Properties of the Si-C Composite Material for LIB Anodes. Batteries, 8(8), 102. https://doi.org/10.3390/batteries8080102