Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology
Abstract
:1. Introduction
2. Principles of Li–S Cells
- (1)
- Reduction reaction of elemental sulfur with Li forms long-chain lithium polysulfides, which possess high solubility in the ether-based liquid electrolytes.
- (2)
- Further reduction reaction between dissolved Li2S4 and lithium leads to insoluble Li2S2 and Li2S.
- [SH] = high PS concentration normalized to the cell surface or volume;
- t = time;
- I = charge or discharge current normalized to cell surface or volume;
- qH = sulfur-specific capacity related to the high voltage plateau;
- ks = heterogeneous reaction constant or shuttle constant.
- Qupper = the upper plateau capacity, which depends on the concentration of both higher-order polysulfides and the specific capacity;
- tR = resting time;
- ks = heterogeneous reaction constant or shuttle constant.
2.1. The Cathode
2.2. The Anode
2.3. The Separator
2.4. The Electrolyte
3. Requirements for Fabricating Superior Li–S Cells
3.1. Nanofabrication of Sulfur with a Carbon Host
3.1.1. Single Core–Shell Structure Carbon Hosts
3.1.2. Dual Core–Shell Structure Carbon Hosts
3.1.3. Nanofiber/Nanorod Carbon Hosts
3.1.4. Carbon Cloth-Based Carbon Hosts
3.2. Electrical Conductivity of the Carbon Hosts
3.3. Pore Volume and Surface Area of the Carbon Hosts
3.4. Inorganic Polysulfide Absorptive Materials
3.5. Polymeric Polysulfide Absorptive Materials
3.5.1. Part of the Cathode Structure
3.5.2. Part of the Separator
3.5.3. Part of the Anode Structure
4. Solid-State Li–S Cells
4.1. Solid Inorganic Electrolytes
4.2. Solid Polymer Electrolytes
4.3. Performance of Current State-of-the-Art Solid-State Li–S Cells
5. Proxy Li–S Cells
5.1. Silicon as the Anode
5.2. Li2S as the Cathode
5.3. MoS3 as the Cathode
6. Future Prospects and Limitations of Li–S Technology
6.1. High Conductivity
6.2. Volume Expansion Mitigation
6.3. Addressing the PSS
6.4. Safety and Stability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Covert, T.; Greenstone, M.; Knittel, C.R. Will We Ever Stop Using Fossil Fuels? J. Econ. Perspect. 2016, 30, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Emadi, A. Hybrid and Plug-In Hybrid Electric Vehicles. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; Volume 6735. [Google Scholar] [CrossRef]
- Komatsu, M.; Takaoka, T.; Ishikawa, T.; Gotouda, Y.; Suzuki, N.; Ozawa, T. Study on the Potential Benefits of Plug-in Hybrid Systems. SAE Tech. Pap. 2008, 2008, 11. [Google Scholar] [CrossRef]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of Different Battery Types for Electric Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, M. With Ultralight Lithium–Sulfur Batteries, Electric Airplanes Could Finally Take Off. IEEE. 2020. Available online: https://spectrum.ieee.org/aerospace/aviation/with-ultralight-lithiumsulfur-batteries-electric-airplanes-could-finally-take-off (accessed on 2 February 2022).
- Biemolt, J.; Jungbacker, P.; van Teijlingen, T.; Yan, N.; Rothenberg, G. Beyond Lithium-Based Batteries. Materials 2020, 13, 425. [Google Scholar] [CrossRef] [Green Version]
- Dominish, E.; Teske, S.; Florin, N. Responsible Minerals Sourcing for Renewable Energy. In Report Prepared for Earthworks by the Institute for Sustainable Futures; University of Technology: Sydney, Australia, 2019; Volume 54, Available online: https://www.earthworks.org/publications/responsible-minerals-sourcing-for-renewable-energy/ (accessed on 5 February 2022).
- Ashuri, M.; Dunya, H.; Yue, Z.; Alramahi, D.; Mei, X.; Kucuk, K.; Aryal, S.; Segre, C.U.; Mandal, B.K. Enhancement in Electrochemical Performance of Lithium–Sulfur Cells through Sulfur Encapsulation in Hollow Carbon Nanospheres Coated with Ultra-Thin Aluminum Fluoride Layer. ChemistrySelect 2019, 4, 12622–12629. [Google Scholar] [CrossRef]
- Dunya, H.; Ashuri, M.; Alramahi, D.; Yue, Z.; Kucuk, K.; Segre, C.U.; Mandal, B.K. MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries. ChemEngineering 2020, 4, 42. [Google Scholar] [CrossRef]
- Dunya, H.; Ashuri, M.; Yue, Z.; Kucuk, K.; Lin, Y.; Alramahi, D.; Segre, C.U.; Mandal, B.K. Rational design of titanium oxide-coated dual Core–Shell sulfur nanocomposite cathode for highly stable lithium-sulfur batteries. J. Phys. Chem. Solids 2021, 149, 109791. [Google Scholar] [CrossRef]
- Dunya, H.; Yue, Z.; Ashuri, M.; Mei, X.; Lin, Y.; Kucuk, K.; Aryal, S.; Segre, C.U.; Mandal, B.K. A New Graphitic Carbon Nitride-Coated Dual Core–Shell Sulfur Cathode for Highly Stable Lithium–Sulfur Cells. Mater. Chem. Phys. 2020, 246, 122842. [Google Scholar] [CrossRef]
- Kawase, A.; Shirai, S.; Yamoto, Y.; Arakawa, R.; Takata, T. Electrochemical reactions of lithium-sulfur batteries: An analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 2014, 16, 9344–9350. [Google Scholar] [CrossRef]
- Carbone, L.; Greenbaum, S.G.; Hassoun, J. Lithium Sulfur and Lithium Oxygen Batteries: New Frontiers of Sustainable Energy Storage. Sustain. Energy Fuels 2017, 1, 228–247. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; O’Neill, L.; Cleaver, T.; Walus, S. Lithium–Sulfur Battery Technology Readiness and Applications-A Review. Energies 2017, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chen, Z.; Lu, J. Lithium–Sulfur Batteries for Commercial Applications. Chem 2018, 4, 3–7. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Z.; Wang, S.; Yu, J. Inhibition of Polysulfide Diffusion in Lithium–Sulfur Batteries: Mechanism and Improvement Strategies. J. Mater. Chem. A 2019, 7, 12381–12413. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Adair, K.; Zhang, H.; Sun, X. Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application; Springer: Singapore, 2018; Volume 1. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Xu, W.; Lv, D.; Xiao, J.; Zhang, J.G. Anodes for Rechargeable Lithium–Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1–23. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Wang, Y.; Chen, Y.; Guo, X.; Wu, Z.; Chen, G.; Zhong, B.; Xiang, W.; Zhong, Y. A review of cathode materials in lithium-sulfur batteries. Ionics 2020, 26, 5299–5318. [Google Scholar] [CrossRef]
- Angulakshmi, N.; Stephan, A.M. Efficient Electrolytes for Lithium–Sulfur Batteries. Front. Energy Res. 2015, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Ye, R.; Bell, J.; Patino, D.; Ahmed, K.; Ozkan, M.; Ozkan, C.S. Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Leng, D.; Li, W.; Qie, L.; Dong, Z.; Cheng, Z.; Fan, Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 2020, 27, 279–296. [Google Scholar] [CrossRef]
- Kang, W.; Deng, N.; Ju, J.; Li, Q.; Wu, D.; Ma, X.; Li, L.; Naebe, M.; Cheng, B. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 2016, 8, 16541–16588. [Google Scholar] [CrossRef]
- Wu, F.-B.; Yang, B.; Ye, J.-L. (Eds.) Chapter 2-Technologies of Energy Storage Systems; Academic Press: Cambridge, MA, USA, 2019; pp. 17–56. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef]
- Lin, Z.; Liang, C. Lithium–Sulfur batteries: From liquid to solid cells. J. Mater. Chem. A 2015, 3, 936–958. [Google Scholar] [CrossRef]
- Yan, J.; Liu, X.; Li, B. Capacity fade analysis of sulfur cathodes in lithium–sulfur batteries. Adv. Sci. 2016, 3, 1600101. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. Energies 2018, 11, 2408. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Xie, J.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E.J.; Zheng, J.P. Self-Discharge Behavior of Lithium–Sulfur Batteries at Different Electrolyte/Sulfur Ratios. J. Electrochem. Soc. 2019, 166, A5287–A5294. [Google Scholar] [CrossRef]
- Zhao, X.; Cheruvally, G.; Kim, C.; Cho, K.-K.; Ahn, H.-J.; Kim, K.-W.; Ahn, J.-H. Lithium/Sulfur Secondary Batteries: A Review. J. Electrochem. Sci. Technol. 2016, 7, 97–114. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kim, D.W. Cathode materials for lithium-sulfur batteries: A practical perspective. J. Mater. Chem. A 2017, 5, 17734–17776. [Google Scholar] [CrossRef]
- Peng, H.J.; Zhang, G.; Chen, X.; Zhang, Z.W.; Xu, W.T.; Huang, J.Q.; Zhang, Q. Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angew. Chem.-Int. Ed. 2016, 55, 12990–12995. [Google Scholar] [CrossRef]
- Mcnulty, D.; Landgraf, V.; Trabesinger, S. The importance of sulfur host structural preservation for lithium-sulfur battery performance. J. Mater. Chem. A 2020, 8, 26085–26097. [Google Scholar] [CrossRef]
- Yamada, M.; Watanabe, T.; Gunji, T.; Wu, J.; Matsumoto, F. Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem 2020, 1, 124–159. [Google Scholar] [CrossRef]
- Xu, H.; Shi, Y.; Yang, S.; Li, B. A linear molecule sulfur-rich organic cathode material for high performance lithium–sulfur batteries. J. Power Sources 2019, 430, 210–217. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, J.; Hwang, J.Y.; Sun, Y.K. Recent research trends in Li–S batteries. J. Mater. Chem. A 2018, 6, 11582–11605. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Yan, J.; Kang, W.; Ju, J.; Ruan, Y.; Wang, X.; Zhuang, X.; Li, Q.; Cheng, B. A review on anode for lithium-sulfur batteries: Progress and prospects. Chem. Eng. J. 2018, 347, 343–365. [Google Scholar] [CrossRef]
- James Dye. Lithium Chemical Element. Available online: https://www.britannica.com/science/lithium-chemical-element (accessed on 2 February 2022).
- Orendorff, C.J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61–65. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C. A review of functional separators for lithium metal battery applications. Materials 2020, 13, 4625. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, C.; Chi, Z.; Ke, F.; Yang, Y.; Wang, A.; Wang, W.; Miao, L. How Far Away Are Lithium–Sulfur Batteries From Commercialization? Front. Energy Res. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Ding, N.; Zhou, L.; Zhou, C.; Geng, D.; Yang, J.; Chien, S.W.; Liu, Z.; Ng, M.F.; Yu, A.; Hor, T.S.A.; et al. Building better lithium-sulfur batteries: From LiNO2 to solid oxide catalyst. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Suo, L.; Hu, Y.S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, F.; Wang, L. Cathode Materials for Lithium Sulfur Batteries: Design, Synthesis, and Electrochemical Performance. In Alkali-ion Batteries; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.X.; Zhao, T.S.; Liu, M.; Jiang, H.R.; Xiong, C. A Li2S-Based Sacrificial Layer for Stable Operation of Lithium–Sulfur Batteries. Energy Technol. 2018, 6, 2210–2219. [Google Scholar] [CrossRef]
- Mahmood, N.; Hou, Y. Electrode Nanostructures in Lithium-Based Batteries. Adv. Sci. 2014, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Narita, A.; Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A. Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 2017, 7, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes, A.B.; Ferrero, G.A.; Diez, N.; Sevilla, M. A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustain. Chem. Eng. 2018, 6, 16323–16331. [Google Scholar] [CrossRef] [Green Version]
- Knoop, J.E.; Ahn, S. Review recent advances in nanomaterials for high-performance Li–S batteries. J. Energy Chem. 2020, 47, 86–106. [Google Scholar] [CrossRef]
- Sahore, R.; Levin, B.D.A.; Pan, M.; Muller, D.A.; DiSalvo, F.J.; Giannelis, E.P. Design Principles for Optimum Performance of Porous Carbons in Lithium–Sulfur Batteries. Adv. Energy Mater. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Zhong, Y.; Wu, J.; Xu, R.; Yao, Z.; Wang, D.; Tang, W.; Wang, X.; Tu, J. Porous Carbon Hosts for Lithium–Sulfur Batteries. Chem.-A Eur. J. 2019, 25, 3710–3725. [Google Scholar] [CrossRef]
- Yue, Z.; Dunya, H.; Kucuk, K.; Aryal, S.; Ma, Q.; Antonov, S.; Ashuri, M.; Alabbad, B.; Lin, Y.; Segre, C.U.; et al. MnO2-Coated Sulfur-Filled Hollow Carbon Nanosphere-Based Cathode Materials for Enhancing Electrochemical Performance of Li–S Cells. J. Electrochem. Soc. 2019, 166, A1355–A1362. [Google Scholar] [CrossRef]
- Seh, Z.W.; Li, W.; Cha, J.J.; Zheng, G.; Yang, Y.; McDowell, M.T.; Hsu, P.C.; Cui, Y. Sulphur-TiO2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium–Sulphur Batteries. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ma, Z.; Li, J.; Liu, Z.; Fan, L.; Qin, X.; Shao, G. Core-Shell-Structured Sulfur Cathode: Ultrathin Î-MnO2Nanosheets as the Catalytic Conversion Shell for Lithium Polysulfides in High Sulfur Content Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 35049–35057. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, J.; Chen, R.; Wu, S.; Li, L.; Chen, S.; Zhao, T. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 2011, 115, 6057–6063. [Google Scholar] [CrossRef]
- Sun, Q.; He, B.; Zhang, X.Q.; Lu, A.H. Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium–Sulfur Batteries. ACS Nano 2015, 9, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, H.B.; Yuan, C.; Guo, Z.; Lou, X.W. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem.-Int. Ed. 2012, 51, 9592–9595. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wan, W.; Chen, J.T.; Zhou, H.H.; Zhang, X.X.; Yuan, L.X.; Huang, Y.H. Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J. Mater. Chem. A 2013, 1, 1716–1723. [Google Scholar] [CrossRef]
- He, D.; Liu, X.; Li, X.; Lyu, P.; Chen, J.; Rao, Z. Regulating the polysulfide redox kinetics for high-performance lithium-sulfur batteries through highly sulfiphilic FeWO4 nanorods. Chem. Eng. J. 2021, 419, 129509. [Google Scholar] [CrossRef]
- Yeon, J.S.; Yun, S.; Park, J.M.; Park, H.S. Surface-Modified Sulfur Nanorods Immobilized on Radially Assembled Open-Porous Graphene Microspheres for Lithium–Sulfur Batteries. ACS Nano 2019, 13, 5163–5171. [Google Scholar] [CrossRef]
- Ni, L.; Zhao, G.; Yang, G.; Niu, G.; Chen, M.; Diao, G. Dual Core–Shell-Structured S@C@MnO2 Nanocomposite for Highly Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 34793–34803. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Park, K.S.; Hong, J.; Song, J.; Zhou, L.; Mai, Y.W.; Huang, H.; Goodenough, J.B. Sulfur Encapsulated in Porous Hollow CNTs@CNFs for High Performance Lithium–Sulfur Batteries. J. Mater. Chem. A 2014, 2, 10126–10130. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Z.-H.; Bai, Y.; Kang, F.; Inagaki, M. Porous Carbon Nanofibers: Preparation and Potential Applications. Curr. Org. Chem. 2013, 17, 1434–1447. [Google Scholar] [CrossRef]
- Kang, W.; Fan, L.; Deng, N.; Zhao, H.; Li, Q.; Naebe, M.; Yan, J.; Cheng, B. Sulfur-Embedded Porous Carbon Nanofiber Composites for High Stability Lithium–Sulfur Batteries. Chem. Eng. J. 2018, 333, 185–190. [Google Scholar] [CrossRef]
- Zheng, M.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X.; Zhang, L.; Zhang, S.; Pang, H.; Xu, Q. Carbon Nanotube-Based Materials for Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 17204–17241. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Cheng, Z.; Pan, P.; Zhang, M.; Jiang, L.; Mao, J.; Ni, C.; Zhang, Y.; Wang, Z.; et al. Fe3C Composite Carbon Nanofiber Interlayer for Efficient Trapping and Conversion of Polysulfides in Lithium–Sulfur Batteries. J. Alloy. Compd. 2020, 847, 156443. [Google Scholar] [CrossRef]
- García-Soriano, F.J.; Para, M.L.; Luque, G.L.; Barraco, D.; Leiva, E.P.M.; Lener, G. Improving the Polysulfide Barrier by Efficient Carbon Nanofibers Coating on Separator/Cathode for Li–S Batteries. J. Solid State Electrochem. 2020, 24, 2341–2351. [Google Scholar] [CrossRef]
- Tong, Z.; Huang, L.; Lei, W.; Zhang, H.; Zhang, S. Carbon-Containing Electrospun Nanofibers for Lithium–Sulfur Battery: Current Status and Future Directions. J. Energy Chem. 2021, 54, 254–273. [Google Scholar] [CrossRef]
- Xie, K.; Yuan, K.; Zhang, K.; Shen, C.; Lv, W.; Liu, X.; Wang, J.-G.; Wei, B. Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 4605–4613. [Google Scholar] [CrossRef]
- Zhou, L.; Danilov, D.L.; Eichel, R.A.; Notten, P.H.L. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Adv. Energy Mater. 2021, 11, 2001304. [Google Scholar] [CrossRef]
- Chen, S.; Huang, X.; Liu, H.; Sun, B.; Yeoh, W.; Li, K.; Zhang, J.; Wang, G. 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium–Sulfur Batteries. Adv. Energy Mater. 2014, 4, 1301761. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, C.; Zhao, C.; Song, X.; Han, X.; Liu, S.; Hao, C.; Qiu, J. Cobalt-Embedded Nitrogen-Doped Hollow Carbon Nanorods for Synergistically Immobilizing the Discharge Products in Lithium–Sulfur Battery. Energy Storage Mater. 2016, 5, 223–229. [Google Scholar] [CrossRef]
- Zou, K.; Li, N.; Dai, X.; Jing, W.; Shi, M.; Lu, C.; Tan, Q.; Xin, Y.; Sun, J.; Chen, Y.; et al. Lightweight Freestanding CeF3 Nanorod/Carbon Nanotube Composite Interlayer for Lithium–Sulfur Batteries. ACS Appl. Nano Mater. 2020, 3, 5732–5742. [Google Scholar] [CrossRef]
- Song, J.-Y.; Lee, H.-H.; Hong, W.G.; Huh, Y.S.; Lee, Y.S.; Kim, H.J.; Jun, Y.-S. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium–Sulfur Batteries. Nanomaterials 2018, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Hu, J.; Wang, Q.; Lin, D.; Li, K.; Zhou, L. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium–sulfur batteries. Carbon 2019, 150, 76–84. [Google Scholar] [CrossRef]
- Xu, J.; Su, D.; Wang, G. Co3O4-Carbon Cloth Free Standing Cathode for Lithium Sulfur Battery. IOP Conf. Ser. Mater. Sci. Eng. 2017, 222, 012013. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Wu, J.; Ma, Z.; Li, B.; Zhang, X.; Zu, X.; Xiang, X.; Li, S. A Melt-Diffusion Strategy for Tunable Sulfur Loading on CC@MoS2 for Lithium–Sulfur Batteries. Energy Rep. 2020, 6, 172–180. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Du, X.; Zhang, F. A Mn3O4 Nano-Wall Array Based Binder-Free Cathode for High Performance Lithium–Sulfur Batteries. J. Mater. Chem. A 2017, 5, 6447–6454. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, X.; Zhou, G.; Zhang, W.; Luo, J.; Huang, H.; Gan, Y.; Liang, C.; Xia, Y.; Zhang, J.; et al. Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Lett. 2017, 2, 1711–1719. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Tian, W.; Chen, W.; Xi, B.; Li, H.; Feng, J.; Xiong, S. Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 10760–10770. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, C.; Chen, X.; Liang, P.; Wan, H.; Liu, X.; Wang, H. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 392, 123661. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Large-Scale Synthesis of Mesoporous Carbon Microspheres with Controllable Structure and Nitrogen Doping Using a Spray Drying Method. RSC Adv. 2014, 4, 62662–62665. [Google Scholar] [CrossRef]
- Wang, C.; Song, H.; Yu, C.; Ullah, Z.; Guan, Z.; Chu, R.; Zhang, Y.; Zhao, L.; Li, Q.; Liu, L. Iron Single-Atom Catalyst Anchored on Nitrogen-Rich MOF-Derived Carbon Nanocage to Accelerate Polysulfide Redox Conversion for Lithium Sulfur Batteries. J. Mater. Chem. A 2020, 8, 3421–3430. [Google Scholar] [CrossRef]
- Lee, B.J.; Kang, T.H.; Lee, H.Y.; Samdani, J.S.; Jung, Y.; Zhang, C.; Yu, Z.; Xu, G.L.; Cheng, L.; Byun, S.; et al. Revisiting the Role of Conductivity and Polarity of Host Materials for Long-Life Lithium–Sulfur Battery. Adv. Energy Mater. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, J.; Chen, X.; Weng, G.J. Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a monte carlo method. Nanomaterials 2020, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Xu, Y.; Wang, X.; Shi, X.; Mulder, F.M. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake. Sci. China Phys. Mech. Astron. 2017, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Min, J.H.; Patel, M.; Koh, W.G. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers 2018, 10, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Gao, W.; Jin, B.; Jiang, Q. Advances in Cathode Materials for High Performance Lithium–Sulfur Batteries. IScience 2018, 6, 151–198. [Google Scholar] [CrossRef] [Green Version]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadyszak, K.; Wychowaniec, J.K.; Litowczenko, J. Biomedical applications of graphene-based structures. Nanomaterials 2018, 8, 944. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shruthi, G.; Baishali, G.; Radhakrishna, V.; Verma, P. Reducing graphene oxide using hydroiodic acid fumes and low temperature annealing for enhanced electrical conductivity. Graphene Technol. 2020, 5, 19–25. [Google Scholar] [CrossRef]
- Yin, F.; Ren, J.; Zhang, Y.; Tan, T.; Chen, Z. A PPy/ZnO functional interlayer to enhance electrochemical performance of lithium/sulfur batteries. Nanoscale Res. Lett. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Kaiser, M.R.; Ma, Z.; Wang, X.; Han, F.; Gao, T.; Fan, X.; Wang, J.Z.; Liu, H.K.; Dou, S.; Wang, C. Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano 2017, 11, 9048–9056. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y. Polyacrylonitrile/Graphene Composite as a Precursor to a Sulfur-Based Cathode Material for High-Rate Rechargeable Li–S Batteries. Energy Environ. Sci. 2012, 5, 6966–6972. [Google Scholar] [CrossRef]
- Zu, C.; Manthiram, A. Hydroxylated Graphene–Sulfur Nanocomposites for High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2013, 3, 1008–1012. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Aksay, I.A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Sandwich-Type Functionalized Graphene Sheet-Sulfur Nanocomposite for Rechargeable Lithium Batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660–7665. [Google Scholar] [CrossRef]
- Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc. 2011, 133, 18522–18525. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Xiao, J.; Yang, Z.; Wang, H. Graphene/Sulfur@Graphene Composite Structure Material for a Lithium–Sulfur Battery Cathode. J. Nanomater. 2019, 2019, 6480236. [Google Scholar] [CrossRef]
- Song, M.-K.; Zhang, Y.; Cairns, E.J. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano Lett. 2013, 13, 5891–5899. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-Z.; Lu, L.; Choucair, M.; Stride, J.A.; Xu, X.; Liu, H.-K. Sulfur-Graphene Composite for Rechargeable Lithium Batteries. J. Power Sources 2011, 196, 7030–7034. [Google Scholar] [CrossRef]
- Evers, S.; Nazar, L.F. Graphene-Enveloped Sulfur in a One Pot Reaction: A Cathode with Good Coulombic Efficiency and High Practical Sulfur Content. Chem. Commun. 2012, 48, 1233–1235. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liang, Y.; Tucker Robinson, J.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Lett. 2011, 11, 2644–2647. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Sun, W.; Ke, J.; Wang, Y.; Liu, S.; Hong, X.; Li, Y.; Chen, Y.; Xie, W.; Zheng, C. A 3D Conductive Network of Porous Carbon Nanoparticles Interconnected with Carbon Nanotubes as the Sulfur Host for Long Cycle Life Lithium–Sulfur Batteries. Nanoscale 2018, 10, 22601–22611. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, H.; Rich, M.J.; Drzal, L.T. Thermo-Physical Properties of Epoxy Nanocomposites Reinforced by Carbon Nanotubes and Vapor Grown Carbon Fibers. Thermochim. Acta 2006, 442, 67–73. [Google Scholar] [CrossRef]
- Yang, C.-P.; Yin, Y.-X.; Ye, H.; Jiang, K.-C.; Zhang, J.; Guo, Y.-G. Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Cao, X.; Liu, W.; Sun, X. Research Progress of the Solid State Lithium–Sulfur Batteries. Front. Energy Res. 2019, 7, 1–20. [Google Scholar] [CrossRef]
- Ando, A.; Ikoma, A.; Obata, K.; Kamei, Y.; Dokko, K.; Watanabe, M. Effects of Pore Volume and Pore Size Distribution of Carbon Supports of Sulfur on Performance of Li–S Batteries with Solvate Ionic Liquid Electrolyte. ECS Meet. Abstr. 2016, MA2016-02, 708. [Google Scholar] [CrossRef]
- Kang, N.; Lin, Y.; Yang, L.; Lu, D.; Xiao, J.; Qi, Y.; Cai, M. Cathode Porosity Is a Missing Key Parameter to Optimize Lithium–Sulfur Battery Energy Density. Nat. Commun. 2019, 10, 4597. [Google Scholar] [CrossRef]
- Barai, P.; Mistry, A.; Mukherjee, P.P. Poromechanical Effect in the Lithium–Sulfur Battery Cathode. Extrem. Mech. Lett. 2016, 9, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Hippauf, F.; Nickel, W.; Hao, G.-P.; Schwedtmann, K.; Giebeler, L.; Oswald, S.; Borchardt, L.; Doerfler, S.; Weigand, J.J.; Kaskel, S. The Importance of Pore Size and Surface Polarity for Polysulfide Adsorption in Lithium Sulfur Batteries. Adv. Mater. Interfaces 2016, 3, 1600508. [Google Scholar] [CrossRef]
- Wu, D.S.; Shi, F.; Zhou, G.; Zu, C.; Liu, C.; Liu, K.; Liu, Y.; Wang, J.; Peng, Y.; Cui, Y. Quantitative investigation of polysulfide adsorption capability of candidate materials for Li–S batteries. Energy Storage Mater. 2018, 13, 241–246. [Google Scholar] [CrossRef]
- Kim, J.W.; Seo, G.; Bong, S.; Lee, J. Improved Redox Reaction of Lithium Polysulfides on the Interfacial Boundary of Polar CoC2O4 as a Polysulfide Catenator for a High-Capacity Lithium–Sulfur Battery. ChemSusChem 2021, 14, 876–883. [Google Scholar] [CrossRef]
- Xiang, H.; Deng, N.; Zhao, H.; Wang, X.; Wei, L.; Wang, M.; Cheng, B.; Kang, W. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects. J. Energy Chem. 2021, 58, 523–556. [Google Scholar] [CrossRef]
- Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y.; et al. A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Adv. Mater. 2017, 29, 1605160. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Gao, X.; Thomas, J.P.; Ngai, J.; Altounian, H.; Leung, K.T.; Meng, Y.; Li, Y. Ionically Cross-Linked PEDOT:PSS as a Multi-Functional Conductive Binder for High-Performance Lithium–Sulfur Batteries. Sustain. Energy Fuels 2018, 2, 1574–1581. [Google Scholar] [CrossRef]
- Ahn, S.; Noguchi, T.; Momma, T.; Nara, H.; Yokoshima, T.; Togasaki, N.; Osaka, T. Facile Fabrication of Sulfur/Ketjenblack-PEDOT:PSS Composite as a Cathode with Improved Cycling Performance for Lithium Sulfur Batteries. Chem. Phys. Lett. 2020, 749, 137426. [Google Scholar] [CrossRef]
- Anilkumar, K.M.; Jinisha, B.; Manoj, M.; Pradeep, V.S.; Jayalekshmi, S. Layered Sulfur/PEDOT:PSS Nano Composite Electrodes for Lithium Sulfur Cell Applications. Appl. Surf. Sci. 2018, 442, 556–564. [Google Scholar] [CrossRef]
- Li, H.; Sun, M.; Zhang, T.; Fang, Y.; Wang, G. Improving the Performance of PEDOT-PSS Coated Sulfur@activated Porous Graphene Composite Cathodes for Lithium–Sulfur Batteries. J. Mater. Chem. A 2014, 2, 18345–18352. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, G.; Cha, J.J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5, 9187–9193. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Zeng, M.; He, H.; Huang, J.; Feng, Z.; Li, J.; Liang, Z.; Zhou, T. Boosting the polysulfides adsorption-catalysis process on carbon nanotube interlayer via a simple polyelectrolyte-assisted strategy for high-performance lithium sulfur batteries. J. Alloy. Compd. 2022, 894, 162556. [Google Scholar] [CrossRef]
- Li, L.; Pascal, T.A.; Connell, J.G.; Fan, F.Y.; Meckler, S.M.; Ma, L.; Chiang, Y.M.; Prendergast, D.; Helms, B.A. Molecular Understanding of Polyelectrolyte Binders That Actively Regulate Ion Transport in Sulfur Cathodes. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Du, Z.; Ma, Z.; Shao, G. Designing a Functional CNT+PB@MXene-Coated Separator for High-Capacity and Long-Life Lithium–Sulfur Batteries. Membranes 2022, 12, 134. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Meng, X.; Wang, R. MXene-Engineered Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 22730–22743. [Google Scholar] [CrossRef]
- Yu, X.; Joseph, J.; Manthiram, A. Polymer Lithium–Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode. J. Mater. Chem. A 2015, 3, 15683–15691. [Google Scholar] [CrossRef]
- Song, S.; Shi, L.; Lu, S.; Pang, Y.; Wang, Y.; Zhu, M.; Ding, D.; Ding, S. A New Polysulfide Blocker-Poly(Acrylic Acid) Modified Separator for Improved Performance of Lithium–Sulfur Battery. J. Membr. Sci. 2018, 563, 277–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Y.; Zhang, Z.; Zhang, K.; Li, J. Al2O3-Coated Porous Separator for Enhanced Electrochemical Performance of Lithium Sulfur Batteries. Electrochim. Acta 2014, 129, 55–61. [Google Scholar] [CrossRef]
- He, Y.; Qiao, Y.; Chang, Z.; Cao, X.; Jia, M.; He, P.; Zhou, H. Developing A “Polysulfide-Phobic” Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angew. Chem.-Int. Ed. 2019, 58, 11774–11778. [Google Scholar] [CrossRef]
- Wang, P.; Bao, J.; Lv, K.; Zhang, N.; Chang, Z.; He, P.; Zhou, H. Rational Design of a Gel–Polymer–Inorganic Separator with Uniform Lithium-Ion Deposition for Highly Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 35788–35795. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Z.; Ning, R.; Xi, S.; Tang, W.; Du, Y.; Liu, C.; Ren, Z.; Chi, X.; Bai, M.; et al. Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147–25154. [Google Scholar] [CrossRef]
- Kim, P.J.H.; Seo, J.; Fu, K.; Choi, J.; Liu, Z.; Kwon, J.; Hu, L.; Paik, U. Synergistic Protective Effect of a BN-Carbon Separator for Highly Stable Lithium Sulfur Batteries. NPG Asia Mater. 2017, 9, e375. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, J.; Kim, S.W.; Halim, W.; Frey, M.W.; Joo, Y.L. Effective Suppression of the Polysulfide Shuttle Effect in Lithium–Sulfur Batteries by Implementing rGO-PEDOT:PSS-Coated Separators via Air-Controlled Electrospray. ACS Omega 2018, 3, 16465–16471. [Google Scholar] [CrossRef]
- Babu, D.B.; Giribabu, K.; Ramesha, K. Permselective SPEEK/Nafion Composite-Coated Separator as a Potential Polysulfide Crossover Barrier Layer for Li–S Batteries. ACS Appl. Mater. Interfaces 2018, 10, 19721–19729. [Google Scholar] [CrossRef]
- Xiong, X.; Yan, W.; You, C.; Zhu, Y.; Chen, Y.; Fu, L.; Zhang, Y.; Yu, N.; Wu, Y. Methods to Improve Lithium Metal Anode for Li–S Batteries. Front. Chem. 2019, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Lu, Y.; Lu, Y.; Han, M.; Li, H.; Tao, Z.; Niu, Z.; Chen, J. Nafion/Titanium Dioxide-Coated Lithium Anode for Stable Lithium–Sulfur Batteries. Chem.–Asian J. 2018, 13, 1379–1385. [Google Scholar] [CrossRef]
- Ren, Y.X.; Zeng, L.; Jiang, H.R.; Ruan, W.Q.; Chen, Q.; Zhao, T.S. Rational Design of Spontaneous Reactions for Protecting Porous Lithium Electrodes in Lithium–Sulfur Batteries. Nat. Commun. 2019, 10, 3249. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.-K.; Kong, L.-L.; Liu, S.; Li, G.-R.; Gao, X.-P. Protected Lithium Anode with Porous Al2O3 Layer for Lithium–Sulfur Battery. J. Mater. Chem. A 2015, 3, 12213–12219. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Tung, V.; Li, Y.; Lai, Z. Protection of Lithium Anode by a Highly Porous PVDF Membrane for High-Performance Li–S Battery. ACS Appl. Energy Mater. 2020, 3, 2510–2515. [Google Scholar] [CrossRef] [Green Version]
- Kolosnitsyn, V.S.; Karaseva, E.V. Lithium–Sulfur Batteries: Problems and Solutions. Russ. J. Electrochem. 2008, 44, 506–509. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, L.; Xiao, M.; Wang, S.; Ren, S.; Han, D.; Meng, Y. Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 4629–4646. [Google Scholar] [CrossRef]
- Grady, Z.A.; Wilkinson, C.J.; Randall, C.A.; Mauro, J.C. Emerging Role of Non-Crystalline Electrolytes in Solid-State Battery Research. Front. Energy Res. 2020, 8, 1–23. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Wang, Y.; Sahadeo, E.; Rubloff, G.; Lin, C.-F.; Lee, S.B. High-Capacity Lithium Sulfur Battery and beyond: A Review of Metal Anode Protection Layers and Perspective of Solid-State Electrolytes. J. Mater. Sci. 2019, 54, 3671–3693. [Google Scholar] [CrossRef]
- Li, M.; Frerichs, J.E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C.J.; Hwang, B.J.; Hansen, M.R.; Winter, M.; Bieker, P. Solid-State Lithium–Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Adv. Funct. Mater. 2020, 30, 1910123. [Google Scholar] [CrossRef] [Green Version]
- Naqash, S.; Sebold, D.; Tietz, F.; Guillon, O. Microstructure–Conductivity Relationship of Na3Zr2(SiO4)2(PO4) Ceramics. J. Am. Ceram. Soc. 2019, 102, 1057–1070. [Google Scholar] [CrossRef]
- Jalalian-Khakshour, A.; Phillips, C.O.; Jackson, L.; Dunlop, T.O.; Margadonna, S.; Deganello, D. Solid-State Synthesis of NASICON (Na3Zr2Si2PO12) Using Nanoparticle Precursors for Optimisation of Ionic Conductivity. J. Mater. Sci. 2020, 55, 2291–2302. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Fan, Y.; Li, Y.; Yin, B.; Hu, X.; Dong, D.; Wei, T. Factors Influencing Li+ Migration in Garnet-Type Ceramic Electrolytes. J. Mater. 2019, 5, 214–220. [Google Scholar] [CrossRef]
- Kim, A.; Woo, S.; Kang, M.; Park, H.; Kang, B. Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries. Front. Chem. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Kelvin, F.K.; Yunhui, G.; Boyang, L.; Yizhou, Z.; Shaomao, X.; Yonggang, Y.; Wei, L.; Chengwei, W.; Steven, D.L.; Jiaqi, D.; et al. Toward Garnet Electrolyte–Based Li Metal Batteries: An Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface. Sci. Adv. 2022, 3, e1601659. [Google Scholar] [CrossRef] [Green Version]
- Farsak, M.; Kardaş, G. 2.12 Electrolytic Materials; Dincer, I.B.T.-C.E.S., Ed.; Elsevier: Oxford, UK, 2018; pp. 329–367. [Google Scholar] [CrossRef]
- Salami, T.J.; Imanieh, S.H.; Lawrence, J.G.; Martin, I.R. Amorphous Glass-Perovskite Composite as Solid Electrolyte for Lithium-Ion Battery. Mater. Lett. 2019, 254, 294–296. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Otaegui, L.; Singh, G.; Armand, M.; Rodriguez-Martinez, L.M. Estimation of Energy Density of Li–S Batteries with Liquid and Solid Electrolytes. J. Power Sources 2016, 326, 1–5. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31, 1902029. [Google Scholar] [CrossRef]
- Wei, Z.; Ren, Y.; Wang, M.; He, J.; Huo, W.; Tang, H. Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. Nanoscale Res. Lett. 2020, 15, 122. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Z.; Liu, X.; Chi, M.; Wang, Y. Fundamental Relationship of Microstructure and Ionic Conductivity of Amorphous LLTO as Solid Electrolyte Material. J. Electrochem. Soc. 2019, 166, A515–A520. [Google Scholar] [CrossRef]
- Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. Increasing Poly(Ethylene Oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5, 826–832. [Google Scholar] [CrossRef]
- Hood, Z.D.; Wang, H.; Li, Y.; Pandian, A.S.; Parans Paranthaman, M.; Liang, C. The “Filler Effect”: A Study of Solid Oxide Fillers with β-Li3PS4 for Lithium Conducting Electrolytes. Solid State Ion. 2015, 283, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, X.; Zhang, Q.; Wang, L.; Xu, Z.; Li, Y.; Huang, S. Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 5238–5246. [Google Scholar] [CrossRef]
- Yao, X.; Huang, N.; Han, F.; Zhang, Q.; Wan, H.; Mwizerwa, J.P.; Wang, C.; Xu, X. High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. Adv. Energy Mater. 2017, 7, 1602923. [Google Scholar] [CrossRef]
- Nagata, H.; Chikusa, Y. An All-Solid-State Lithium–Sulfur Battery Using Two Solid Electrolytes Having Different Functions. J. Power Sources 2016, 329, 268–272. [Google Scholar] [CrossRef]
- Sheng, O.; Jin, C.; Luo, J.; Yuan, H.; Fang, C.; Huang, H.; Gan, Y.; Zhang, J.; Xia, Y.; Liang, C.; et al. Ionic Conductivity Promotion of Polymer Electrolyte with Ionic Liquid Grafted Oxides for All-Solid-State Lithium–Sulfur Batteries. J. Mater. Chem. A 2017, 5, 12934–12942. [Google Scholar] [CrossRef]
- Liu, C.; Neale, Z.G.; Cao, G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109–123. [Google Scholar] [CrossRef]
- Liu, N.; Hu, L.; McDowell, M.T.; Jackson, A.; Cui, Y. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries. ACS Nano 2011, 5, 6487–6493. [Google Scholar] [CrossRef]
- Sakabe, J.; Ohta, N.; Ohnishi, T.; Mitsuishi, K.; Takada, K. Porous Amorphous Silicon Film Anodes for High-Capacity and Stable All-Solid-State Lithium Batteries. Commun. Chem. 2018, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Ge, M.; Zhang, A.; Fang, X.; Liu, Y.; Rong, J.; Zhou, C. Silicon(Lithiated)–Sulfur Full Cells with Porous Silicon Anode Shielded by Nafion against Polysulfides to Achieve High Capacity and Energy Density. Nano Energy 2016, 19, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Domi, Y.; Usui, H.; Yamaguchi, K.; Yodoya, S.; Sakaguchi, H. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 2950–2960. [Google Scholar] [CrossRef]
- Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J.C.; Lu, J.; Wu, G. Silicon-Based Anodes for Lithium-Ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation. Nano Energy 2016, 27, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Raić, M.; Mikac, L.; Marić, I.; Štefanić, G.; Škrabić, M.; Gotić, M.; Ivanda, M. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries. Molecules 2020, 25, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; McDowell, M.T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W.D.; Cui, Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett. 2011, 11, 2949–2954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hong, M.; Yang, J.; Xu, Z.; Wang, J.; Guo, Y.; Liang, C. A High Performance Lithium-Ion–Sulfur Battery with a Free-Standing Carbon Matrix Supported Li-Rich Alloy Anode. Chem. Sci. 2018, 9, 8829–8835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Bai, X.; Gulzar, U.; Bai, Y.J.; Capiglia, C.; Deng, W.; Zhou, X.; Liu, Z.; Feng, Z.; Proietti Zaccaria, R. A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Adv. Funct. Mater. 2019, 29, 1–56. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; Wang, Y.; Liang, S.; Gan, Y.; Huang, H.; Zhang, J.; Xia, Y.; Liang, C. Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. J. Chem. 2020, 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Noh, H.; Lee, J.; Lee, H.; Kim, H.-T. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium–Sulfur Cathodes. J. Mater. Chem. A 2018, 6, 6617–6624. [Google Scholar] [CrossRef]
- Wu, Y.; Momma, T.; Nara, H.; Hang, T.; Li, M.; Osaka, T. Synthesis of Lithium Sulfide (Li2S) Wrapped Carbon Nano Composite for Binder-Free Li2S Cathode. J. Electrochem. Soc. 2020, 167, 020531. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, Q.; Chou, S.; Guo, Z.; Konstantinov, K.; Liu, H.; Wang, J. Li2S-Based Li-Ion Sulfur Batteries: Progress and Prospects. Small 2021, 17, 1903934. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Noh, H.; Lee, H.; Kim, H.-T. An Ultrahigh Capacity Graphite/Li2S Battery with Holey-Li2S Nanoarchitectures. Adv. Sci. 2018, 5, 1800139. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, D.; Gao, L.; Harks, P.P.R.M.L.; Eichel, R.-A.; Notten, P.H.L. Carbon-Coated Core–Shell Li2S@C Nanocomposites as High Performance Cathode Materials for Lithium–Sulfur Batteries. J. Mater. Chem. A 2017, 5, 1428–1433. [Google Scholar] [CrossRef]
- Ye, H.; Li, M.; Liu, T.; Li, Y.; Lu, J. Activating Li2S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Lett. 2020, 5, 2234–2245. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Manthiram, A. Metal Sulfide-Decorated Carbon Sponge as a Highly Efficient Electrocatalyst and Absorbant for Polysulfide in High-Loading Li2S Batteries. Adv. Energy Mater. 2019, 9, 1900584. [Google Scholar] [CrossRef]
- Liang, X.; Yun, J.; Xu, K.; Shi, P.; Sun, Y.; Chen, C.; Xiang, H. Trace Ethanol as an Efficient Electrolyte Additive to Reduce the Activation Voltage of the Li2S Cathode in Lithium-Ion–Sulfur Batteries. Chem. Commun. 2019, 55, 10088–10091. [Google Scholar] [CrossRef]
- Meng, X.; Comstock, D.J.; Fister, T.T.; Elam, J.W. Vapor-Phase Atomic-Controllable Growth of Amorphous Li2S for High-Performance Lithium–Sulfur Batteries. ACS Nano 2014, 8, 10963–10972. [Google Scholar] [CrossRef]
- Wu, F.; Lee, J.T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement. Adv. Mater. 2015, 27, 101–108. [Google Scholar] [CrossRef]
- Li, X.; Gao, M.; Du, W.; Ni, B.; Wu, Y.; Liu, Y.; Shang, C.; Guo, Z.; Pan, H. A Mechanochemical Synthesis of Submicron-Sized Li2S and a Mesoporous Li2S/C Hybrid for High Performance Lithium/Sulfur Battery Cathodes. J. Mater. Chem. A 2017, 5, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Kim, H.; Magasinski, A.; Lee, J.T.; Lin, H.-T.; Yushin, G. Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of High-Performance Cathodes for Lithium–Sulfur and Lithium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400196. [Google Scholar] [CrossRef]
- Tan, G.; Xu, R.; Xing, Z.; Yuan, Y.; Lu, J.; Wen, J.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q.; et al. Burning Lithium in CS2 for High-Performing Compact Li2S–Graphene Nanocapsules for Li–S Batteries. Nat. Energy 2017, 2, 17090. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li–S Batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.; Li, B.; Si, Y.; Fu, Y. Lowering the Charge Overpotential of Li2S via the Inductive Effect of Phenyl Diselenide in Li–S Batteries. Chem. Commun. 2019, 55, 7655–7658. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li–S Battery Systems. J. Phys. Chem. Lett. 2014, 5, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Pollard, T.P.; Zhao, E.; Xiao, Y.; Olguin, M.; Borodin, O.; Yushin, G. Layered LiTiO2 for the Protection of Li2S Cathodes against Dissolution: Mechanisms of the Remarkable Performance Boost. Energy Environ. Sci. 2018, 11, 807–817. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kageyama, H.; Taguchi, N.; Nakanishi, K.; Kawaguchi, T.; Ohara, K.; Fukuda, K.; Sakuda, A.; Ohta, T.; Fukunaga, T.; et al. Structure Analyses of Fe-Substituted Li2S-Based Positive Electrode Materials for Li–S Batteries. Solid State Ion. 2018, 320, 387–391. [Google Scholar] [CrossRef]
- Pourali, Z.; Yaftian, M.R.; Sovizi, M.R. Li2S/Transition Metal Carbide Composite as Cathode Material for High Performance Lithium–Sulfur Batteries. Mater. Chem. Phys. 2018, 217, 117–124. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Y.; Ding, Y.; Peng, L.; Zhang, W.; Yu, G. A Conductive Molecular Framework Derived Li2S/N,P-Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1602876. [Google Scholar] [CrossRef]
- Tsao, Y.; Lee, M.; Miller, E.C.; Gao, G.; Park, J.; Chen, S.; Katsumata, T.; Tran, H.; Wang, L.-W.; Toney, M.F.; et al. Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li–S Batteries. Joule 2019, 3, 872–884. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Bai, Z.; Li, Y.; Ma, L.; Dai, A.; Wang, X.; Luo, D.; Wu, T.; Liu, P.; Yang, L.; et al. Electrochemically Primed Functional Redox Mediator Generator from the Decomposition of Solid State Electrolyte. Nat. Commun. 2019, 10, 1890. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Song, M.-K.; Cairns, E.J.; Zhang, Y. Nanostructured Li2S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries. Nano Lett. 2012, 12, 6474–6479. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M.F.; Cui, Y. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries. J. Am. Chem. Soc. 2012, 134, 15387–15394. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.P.; Adkins, J.; Meda, L. Facile Synthesis of Uniform Carbon Coated Li2S/RGO Cathode for High-Performance Lithium–Sulfur Batteries. MRS Adv. 2018, 3, 3501–3506. [Google Scholar] [CrossRef]
- Ye, H.; Ma, L.; Zhou, Y.; Wang, L.; Han, N.; Zhao, F.; Deng, J.; Wu, T.; Li, Y.; Lu, J. Amorphous MoS3 as the Sulfur-Equivalent Cathode Material for Room-Temperature Li–S and Na–S Batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 13091–13096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, U.; Tae Lee, J.; Yun, J.-M.; Lee, B.; Woo Lee, S.; Joh, H.-I.; Eom, K.; Fuller, T.F. In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode. ACS Nano 2018, 13, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Sulfur, US Geological Survey, Mineral Commodity Summaries. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-sulfur.pdf (accessed on 5 February 2022).
- Cobalt, US Geological Survey, Mineral Commodity Summaries. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-cobalt.pdf (accessed on 5 February 2022).
- Sulfur, United States Environmental Protection EPA RED. FACTS. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/0031fact.pdf (accessed on 5 February 2022).
- Cobalt Compounds, United States Environmental Protection. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/cobalt-compounds.pdf (accessed on 5 February 2022).
- Patel, P. Rechargeable Battery Science: A Survey of Advancements in Materials Technology. Available online: https://www.acs.org/content/dam/acsorg/membership/acs/benefits/discovery-reports/batteries.pdf (accessed on 2 May 2022).
Discharge Product | Transferred Electron Number (mol mol−1 S) | Depth of Discharge (%) | Specific Capacity (mA h g−1) |
---|---|---|---|
S8 → S82− | 0.25 | 12.5 | 210 |
S82 → S62− | 0.33 | 16.7 | 280 |
S62− → S42− | 0.5 | 25 | 420 |
S42− → Li2S2 | 1 | 25 | 835 |
Li2S2 → Li2S | 2 | 100 | 1675 |
Cathode | Redox Couple | Voltage (V) | Theoretical Specific Capacity (mA h g−1) |
---|---|---|---|
LiCoO2 | Co4+/Co3+ | 3.6 | 274 |
LiNiO2 | Ni4+/Ni3+ | 4 | 274 |
LiMn2O4 | Mn4+/Mn3+ | 3.9 | 148 |
LiFePO4 | Fe3+/Fe2+ | 3.5 | 170 |
Sulfur | S/Snx−/S2− | 2.1 | 1675 |
Solvent | MW (g mol−1) | Density (g mL−1) | BP (°C) | MP (°C) | Dielectric Constant (ε) | Viscosity (cP) |
---|---|---|---|---|---|---|
1,3 Dioxolane | 74.08 | 1.060 | 75 | −95 | 7.10 | 0.59 |
Tetraethylene glycol dimethyl ether | 222.28 | 1.009 | 275 | −30 | 7.71 | 3.25 |
Diethylene glycol dimethyl ether | 134.17 | 0.943 | 162 | −64 | 7.27 | 1.00 |
1,2 Dimethoxy ethane | 90.12 | 0.867 | 85 | −58 | 6.99 | 0.42 |
Cathode | Sulfur (wt.%) | Preparation | Electrolyte/Binder | Performance (mA h g−1) | Cycle Rate (C) | Last Cycle No. | Ref |
---|---|---|---|---|---|---|---|
Sulfur carboxylated graphene | 80 | Chemical | LiTFSI in DOL&DME/PVDF | 1256 | 0.1 | 200 | [98] |
Sulfur/polyacrylonitrile/graphene | 80.9 | Thermal | LiPF6 in EC&DMC/PTFE | 1200 | 0.1 | 50 | [99] |
Sulfur hydroxylated graphene | 80 | Chemical | LiCF3SO3 in DOL&DME/PVDF | 1021 | 0.5 | 100 | [100] |
Nafion-coated FGSS | 79.2 | Thermal | LiTFSI in DOL&DME/PVDF | 960 | 0.1 | 100 | [101] |
Sulfur/graphene oxide | 69.7 | Thermal | LiTFSI in PYR14TFSI&PEGDME | 954 | 0.1 | 50 | [102] |
Graphene/sulfur graphene | 70 | Thermal | LiTFSI in DOL&DME/PVDF | 887 | 0.2 | 200 | [103] |
CTAB coated sulfur/graphene oxide | 70 | Thermal | LiTFSI in PYR14TFSI&DOL&DME/SBR&CMC | 740 | 0.02 | 1500 | [104] |
Sulfur/graphene nanosheets | 81.8 | Thermal | LiTFSI in PEGDME 500/PVDF | 600 | 0.03 | 40 | [105] |
Graphene-enveloped sulfur | 89.7 | Chemical | LiTFSI in DOL&TEGDME | 550 | 0.2 | 50 | [106] |
Graphene/PEG wrapped sulfur | 80 | Chemical | DOL&DME | 550 | 0.5 | 140 | [107] |
Pore Volume (cm3 g−1) | Max. S Loading (%) | Max. S Loading (%) with 80% Space |
---|---|---|
1.53 | 76.0 | 63.8 |
1.80 | 78.8 | 67.4 |
2.00 | 80.5 | 69.7 |
2.11 | 81.3 | 70.8 |
2.30 | 82.6 | 72.6 |
2.50 | 83.8 | 74.2 |
2.75 | 85.1 | 76.0 |
3.00 | 86.1 | 77.5 |
3.25 | 87.1 | 78.6 |
3.50 | 87.9 | 80.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzanowicz, A.M.; Mei, C.W.; Mandal, B.K. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries 2022, 8, 45. https://doi.org/10.3390/batteries8050045
Suzanowicz AM, Mei CW, Mandal BK. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries. 2022; 8(5):45. https://doi.org/10.3390/batteries8050045
Chicago/Turabian StyleSuzanowicz, Artur M., Cindy W. Mei, and Braja K. Mandal. 2022. "Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology" Batteries 8, no. 5: 45. https://doi.org/10.3390/batteries8050045
APA StyleSuzanowicz, A. M., Mei, C. W., & Mandal, B. K. (2022). Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries, 8(5), 45. https://doi.org/10.3390/batteries8050045