Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review
Abstract
:1. Introduction
2. Synthesis of Functional Coatings on Cathode Materials by Atomic Layer Deposition
2.1. Functional ALD Coatings Used to Improve the Performance of Lithium-Ion Cathodes
2.2. Substantiation of the Synthesis Parameters and Reagents Choice
2.3. Synthesis of Specific Fluoride Coatings
2.4. Evaluation of the Uniformity of the Grown Coatings
2.5. Modification of Cathodes and Electrodes with Different Functional Groups on the Surface
2.6. Effect of Heat Treatment on Cathode Materials with Coatings
2.7. Characterization of the Near-Order Structure in Coatings and Their Relation to the Substrate
2.8. The Presence of a Crystalline Structure and the Density of Grown Coatings
2.9. Evaluation of Coating Growth Rate and Influencing Factors
2.10. Choice between Modifying Active Material Particles or Finished Electrodes
3. Effects of Coatings on the Functional Properties of Modified Cathode Materials and Electrodes
- the primary studies’ results of changes in the coating structure that take place during cycling;
- physicochemical effects leading to improvement of functional properties of cathode materials or positive electrodes;
- the list of observed effects on the electrochemical properties of cathode materials or positive electrodes;
- effect of coatings of different compositions on electronic, ionic conductivity, lithium diffusion resistance through thin films, charge transfer resistance, performance at high potentials, and a large number of charge-discharge cycles, etc.
3.1. Physical and Chemical Processes in Coatings during Lithium Intercalation/Deintercalation during Charge-Discharge of Modified Cathode Materials and Electrodes
- the formation of a large concentration of unstable Co4+ cation, which goes into the electrolyte;
- the reorganization of the cathode structure from hexagonal to monocline (due to cobalt dissolution).
3.2. CV Studies before and after Coating
3.3. Resistance of the Coating during Cycling
3.4. Physical and Chemical Effects Leading to Improved Functional Properties of Cathodes
3.4.1. Reducing the Intensity of Metal Dissolution
3.4.2. Decrease in the Growth Rate of the Solid-Electrolyte Film during the Charge-Discharge Process
- higher intensity of the C-C peak (285 eV), which characterizes the presence of PVDF and carbon black;
- higher intensity of the O1s, which peak characterizing the Ni(II)O bond (530.3 eV);
- lower intensity of maxima characterizing organic compounds (alkyl carbonates), Li2CO3, and LiPFxOy;
- higher intensity of the maximum characterizing the bond of the fluorine atom (685.6 eV) with lithium or aluminum.
3.4.3. Suppression of Undesirable Processes (Changes in the Degree of Oxidation of Metal Ions and Phase Transitions) in the Layers of Cathode Materials Located near the Outer Surface of Cathodes
- 5.
- the coating suppresses the oxidation of Co3+ to Co4+, causing the release of active oxygen;
- 6.
- charge compensation during lithium removal (Li(1-x)Ni0.4-Mn0.4Co0.2O2, where 0 ≤ x ≤ 0.5) is due to nickel oxidation.
3.4.4. Study of the Resistance of Films
- an optimum in coating thickness is observed;
- in the process of testing, the resistances tend to increase. For the modified ones, the increase is less noticeable;
- the exposure time, at high potentials, leads to the intensive growth of the solid-electrolyte film, coating grown slows down this process.
3.4.5. Electronic and Ionic Conductivity
3.4.6. Effect of Film Annealing on the Electrochemical Characteristics of Batteries
3.5. Summary List of Observed Effects on the Electrochemical Properties of Cathode Materials or Positive Electrodes during Coating
4. Comparison of Coatings of Different Compositions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | atomic layer deposition |
GCD | galvanostatic charge-discharge |
CAM | cathode active material |
Cap. ret. | capacity retention |
CCS | chemical current source |
CVD | chemical vapor deposition |
CV | cyclic voltammetry |
dQ/dV | differential capacity analysis |
DSC | differential scanning calorimetry |
EIS | electrochemical impedance spectroscopy |
EELS | electron energy loss spectroscopy |
EDS | X-ray energy dispersive spectroscopy |
ICP-AES | inductively coupled plasma atomic emission spectroscopy |
GITT | galvanostatic intermittent titration technique |
LCO | cathode material with stoichiometry similar with LiCoO2 |
LIB | lithium-ion battery |
LMO | cathode material with stoichiometry similar with LiMn2O4 |
LNMO | cathode material with stoichiometry similar with LiNi0.5Mn1.5O4 |
LMR | lithium- and manganese-rich cathode material with a layer structure |
MLD | molecular layer deposition |
NCA(XYZ) | cathode material with LiNi0.8<x<0.92Co0.03<y<0.15Al0.02<z<0.05O2 structure |
NCM(XYZ) | cathode material with LiNix/(x+y+z)Coy/(x+y+z)Mnz/(x+y+z)O2 structure |
Raman | Raman spectroscopy |
Rate cap. | rate capability |
SEM | scanning electron microscopy |
SIMS | secondary-ion mass spectrometry |
SAED | selected area electron diffraction |
TG | thermogravimetric analysis |
TEM | transmission electron microscopy |
XAFS | X-ray absorption fine structure |
XANES | X-ray absorption near edge structure |
XAS | X-ray absorption spectroscopy |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
Appendix A
Coatings | EELS | EDS | DSC, TG | ICP-AES | Raman | SAED | SEM | SIMS | TEM | XANES | XAS | XPS | XRD | Cap. ret. | CV | dQ/dV | EIS | GCD | GITT | Rate cap. | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | [29] | ||||||||||||||||||||
[30] | |||||||||||||||||||||
[31] | |||||||||||||||||||||
[32] | |||||||||||||||||||||
[33] | |||||||||||||||||||||
[34] | |||||||||||||||||||||
[35] | |||||||||||||||||||||
[36] | |||||||||||||||||||||
[37] | |||||||||||||||||||||
[38] | |||||||||||||||||||||
[39] | |||||||||||||||||||||
[40] | |||||||||||||||||||||
[70] | |||||||||||||||||||||
[25] | |||||||||||||||||||||
[71] | |||||||||||||||||||||
[41] | |||||||||||||||||||||
[42] | |||||||||||||||||||||
[43] | |||||||||||||||||||||
[44] | |||||||||||||||||||||
[45] | |||||||||||||||||||||
[46] | |||||||||||||||||||||
[47] | |||||||||||||||||||||
[7] | |||||||||||||||||||||
[48] | |||||||||||||||||||||
[49] | |||||||||||||||||||||
[50] | |||||||||||||||||||||
[51] | |||||||||||||||||||||
[52] | |||||||||||||||||||||
[53] | |||||||||||||||||||||
[54] | |||||||||||||||||||||
[55] | |||||||||||||||||||||
[56] | |||||||||||||||||||||
[57] | |||||||||||||||||||||
[58] | |||||||||||||||||||||
[59] | |||||||||||||||||||||
Al2O3 | [60] | ||||||||||||||||||||
[61] | |||||||||||||||||||||
[62] | |||||||||||||||||||||
[63] | |||||||||||||||||||||
[64] | |||||||||||||||||||||
[65] | |||||||||||||||||||||
[66] | |||||||||||||||||||||
[67] | |||||||||||||||||||||
[68] | |||||||||||||||||||||
[69] | |||||||||||||||||||||
[72] | |||||||||||||||||||||
[73] | |||||||||||||||||||||
[74] | |||||||||||||||||||||
[75] | |||||||||||||||||||||
[76] | |||||||||||||||||||||
[77] | |||||||||||||||||||||
[78] | |||||||||||||||||||||
[79] | |||||||||||||||||||||
[80] | |||||||||||||||||||||
[81] | |||||||||||||||||||||
[82] | |||||||||||||||||||||
[83] | |||||||||||||||||||||
[84] | |||||||||||||||||||||
[85] | |||||||||||||||||||||
[86] | |||||||||||||||||||||
[87] | |||||||||||||||||||||
[88] | |||||||||||||||||||||
[89] | |||||||||||||||||||||
[90] | |||||||||||||||||||||
[91] | |||||||||||||||||||||
[92] | |||||||||||||||||||||
[93] | |||||||||||||||||||||
[94] | |||||||||||||||||||||
[95] | |||||||||||||||||||||
[96] | |||||||||||||||||||||
[97] | |||||||||||||||||||||
Al2O3-AlF3 | [87] | ||||||||||||||||||||
Al2O3-Ga2O3 | [98] | ||||||||||||||||||||
AlF3 | [99] | ||||||||||||||||||||
[69] | |||||||||||||||||||||
AlF3 | [87] | ||||||||||||||||||||
[100] | |||||||||||||||||||||
AlPO4 | [61] | ||||||||||||||||||||
[101] | |||||||||||||||||||||
[102] | |||||||||||||||||||||
AlPON | [102] | ||||||||||||||||||||
AlWxFy | [103] | ||||||||||||||||||||
CeO2 | [49] | ||||||||||||||||||||
[104] | |||||||||||||||||||||
[105] | |||||||||||||||||||||
[106] | |||||||||||||||||||||
[95] | |||||||||||||||||||||
Fe2O3 | [107] | ||||||||||||||||||||
FeOx | [108] | ||||||||||||||||||||
[109] | |||||||||||||||||||||
[110] | |||||||||||||||||||||
FePO4 | [111] | ||||||||||||||||||||
HfO2 | [112] | ||||||||||||||||||||
LiAlO2 | [48] | ||||||||||||||||||||
LiAlOx | [30] | ||||||||||||||||||||
LiF | [113] | ||||||||||||||||||||
[113] | |||||||||||||||||||||
Li3PO4 | [114] | ||||||||||||||||||||
LiTaO3 | [115] | ||||||||||||||||||||
[116] | |||||||||||||||||||||
LixTiyOz | [117] | ||||||||||||||||||||
MexOy | [139] | ||||||||||||||||||||
MeFx | [139] | ||||||||||||||||||||
MgF2 | [118] | ||||||||||||||||||||
MgO | [44] | ||||||||||||||||||||
NbOx | [119] | ||||||||||||||||||||
Ta2O5 | [120] | ||||||||||||||||||||
TiO2 | [30] | ||||||||||||||||||||
[31] | |||||||||||||||||||||
TiO2 | [33] | ||||||||||||||||||||
[45] | |||||||||||||||||||||
[47] | |||||||||||||||||||||
[7] | |||||||||||||||||||||
[121] | |||||||||||||||||||||
[65] | |||||||||||||||||||||
[122] | |||||||||||||||||||||
[123] | |||||||||||||||||||||
[124] | |||||||||||||||||||||
TiO2-ZnO | [125] | ||||||||||||||||||||
TiO2-Li3PO4 | [126] | ||||||||||||||||||||
TiOx | [117] | ||||||||||||||||||||
TiN | [84] | ||||||||||||||||||||
[89] | |||||||||||||||||||||
TiPO4 | [127] | ||||||||||||||||||||
TiPON | [127] | ||||||||||||||||||||
VxOy | [128] | ||||||||||||||||||||
ZnO | [129] | ||||||||||||||||||||
[39] | |||||||||||||||||||||
[130] | |||||||||||||||||||||
[131] | |||||||||||||||||||||
[67] | |||||||||||||||||||||
[68] | |||||||||||||||||||||
[122] | |||||||||||||||||||||
ZrO2 | [30] | ||||||||||||||||||||
[132] | |||||||||||||||||||||
[44] | |||||||||||||||||||||
[45] | |||||||||||||||||||||
[49] | |||||||||||||||||||||
[133] | |||||||||||||||||||||
[134] | |||||||||||||||||||||
[67] | |||||||||||||||||||||
[68] | |||||||||||||||||||||
[135] | |||||||||||||||||||||
[136] |
Circuit Number | Equivalent Circuit |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 |
References
- Lu (Mark), H.-L. Commercial Technology & Product Development Trends of Cathode & Anode Materials for LIB in 2015. In Proceedings of the Second International Forum on Cathode & Anode Materials for Advanced Batteries, Xiaoshan, Hang Zhou, China, 22 April 2015; p. 55. [Google Scholar]
- Dislich, H.; Hinz, P. History and principles of the sol-gel process, and some new multicomponent oxide coatings. J. Non-Cryst. Solids 1982, 48, 11–16. [Google Scholar] [CrossRef]
- Vahlas, C.; Caussat, B.; Serp, P.; Angelopoulos, G.N. Principles and applications of CVD powder technology. Mater. Sci. Eng. R Rep. 2006, 53, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Malygin, A.A.; Drozd, V.E.; Malkov, A.A.; Smirnov, V.M. From V. B. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition. Chem. Vap. Depos. 2015, 21, 216–240. [Google Scholar] [CrossRef]
- Puurunen, R.L. A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy. Chem. Vap. Depos. 2014, 20, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 52. [Google Scholar] [CrossRef]
- Mohanty, D.; Dahlberg, K.; King, D.M.; David, L.A.; Sefat, A.S.; Wood, D.L.; Daniel, C.; Dhar, S.; Mahajan, V.; Lee, M.; et al. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries. Sci. Rep. 2016, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 2012, 30, 11. [Google Scholar] [CrossRef] [Green Version]
- Donders, M.E.; Knoops, H.C.M.; Kessels, W.M.M.; Notten, P.H.L. Remote Plasma Atomic Layer Deposition of Thin Films of Electrochemically Active LiCoO2. ECS Trans. 2011, 41, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Donders, M.E.; Arnoldbik, W.M.; Knoops, H.C.M.; Kessels, W.M.M.; Notten, P.H.L. Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries. J. Electrochem. Soc. 2013, 160, A3066–A3071. [Google Scholar] [CrossRef] [Green Version]
- Miikkulainen, V.; Ruud, A.; Ostreng, E.; Nilsen, O.; Laitinen, M.; Sajavaara, T.; Fjellvag, H. Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries. J. Phys. Chem. C 2014, 118, 1258–1268. [Google Scholar] [CrossRef]
- Liu, J.; Banis, M.N.; Sun, Q.; Lushington, A.; Li, R.Y.; Sham, T.K.; Sun, X.L. Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries. Adv. Mater. 2014, 26, 6472–6477. [Google Scholar] [CrossRef]
- Popovich, A.A.; Maximov, M.Y.; Novikov, P.A.; Silin, A.O.; Nazarov, D.V.; Rumyantsev, A.M. Cyclic stability of the anode material based on tin(IV) oxide for thin-film current sources. Russ. J. Appl. Chem. 2016, 89, 679–681. [Google Scholar] [CrossRef]
- Nazarov, D.V.; Maximov, M.Y.; Novikov, P.A.; Popovich, A.A.; Silin, A.O.; Smirnov, V.M.; Bobrysheva, N.P.; Osmolovskaya, O.M.; Osmolovsky, M.G.; Rumyantsev, A.M. Atomic layer deposition of tin oxide using tetraethyltin to produce high-capacity Li-ion batteries. J. Vac. Sci. Technol. A 2017, 35, 11. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Gogotsi, Y.; Alshareef, H.N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Kazyak, E.; Chen, K.H.; Wood, K.N.; Davis, A.L.; Thompson, T.; Bielinski, A.R.; Sanchez, A.J.; Wang, X.; Wane, C.M.; Sakamoto, J.; et al. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12. Chem. Mater. 2017, 29, 3785–3792. [Google Scholar] [CrossRef]
- Hamalainen, J.; Holopainen, J.; Munnik, F.; Hatanpaa, T.; Heikkila, M.; Ritala, M.; Leskela, M. Lithium Phosphate Thin Films Grown by Atomic Layer Deposition. J. Electrochem. Soc. 2012, 159, A259–A263. [Google Scholar] [CrossRef]
- Nilsen, O.; Miikkulainen, V.; Gandrud, K.B.; Ostreng, E.; Ruud, A.; Fjellvag, H. Atomic layer deposition of functional films for Li-ion microbatteries. Phys. Status Solidi A-Appl. Mater. Sci. 2014, 211, 357–367. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Donders, M.E.; van de Sanden, M.C.M.; Notten, P.H.L.; Kessels, W.M.M. Atomic layer deposition for nanostructured Li-ion batteries. J. Vac. Sci. Technol. A 2012, 30, 10. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.S.; Cavanagh, A.S.; Gedvilas, L.; Widjonarko, N.E.; Scott, I.D.; Lee, S.H.; Kim, G.H.; George, S.M.; Dillon, A.C. Improved Functionality of Lithium-Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Adv. Energy Mater. 2012, 2, 1022–1027. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Q.; Xu, Q.; Yang, Y.; Shao, Z.P.; Wang, Y. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 2014, 458, 217–224. [Google Scholar] [CrossRef]
- Snyder, M.Q.; Trebukhova, S.A.; Ravdel, B.; Wheeler, M.C.; DiCarlo, J.; Tripp, C.P.; DeSisto, W.J. Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources 2007, 165, 379–385. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wang, F.M. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode. J. Power Sources 2013, 233, 1–5. [Google Scholar] [CrossRef]
- Wang, D.N.; Yang, J.L.; Liu, J.; Li, X.F.; Li, R.Y.; Cai, M.; Sham, T.K.; Sun, X.L. Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: Effects of coating thickness and the size of anode particles. J. Mater. Chem. A 2014, 2, 2306–2312. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lu, P.; Cavanagh, A.S.; Ban, C.; Kim, G.H.; Lee, S.H.; George, S.M.; Harris, S.J.; Dillon, A.C. Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li-Ion Batteries. Adv. Energy Mater. 2013, 3, 213–219. [Google Scholar] [CrossRef]
- Meng, X.B.; Yang, X.Q.; Sun, X.L. Emerging Applications of Atomic Layer Deposition for Lithium-Ion Battery Studies. Adv. Mater. 2012, 24, 3589–3615. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.L. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition. Nanotechnology 2015, 26, 14. [Google Scholar] [CrossRef]
- Ahmed, B.; Xia, C.; Alshareef, H.N. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today 2016, 11, 250–271. [Google Scholar] [CrossRef]
- Bettge, M.; Li, Y.; Sankaran, B.; Rago, N.D.; Spila, T.; Haasch, R.T.; Petrov, I.; Abraham, D.P. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina. J. Power Sources 2013, 233, 346–357. [Google Scholar] [CrossRef]
- Bloom, I.; Trahey, L.; Abouimrane, A.; Belharouak, I.; Zhang, X.F.; Wu, Q.L.; Lu, W.Q.; Abraham, D.P.; Bettge, M.; Elam, J.W.; et al. Effect of interface modifications on voltage fade in 0.5Li(2)MnO(3)center dot 0.5LiNi(0.375)Mn(0.375)CO(0.25)O(2) cathode materials. J. Power Sources 2014, 249, 509–514. [Google Scholar] [CrossRef]
- Cheng, H.M.; Wang, F.M.; Chu, J.P.; Santhanam, R.; Rick, J.; Lo, S.C. Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes. J. Phys. Chem. C 2012, 116, 7629–7637. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, T.; Li, Y.; Li, M.; Chan, C.K. Oxidation-reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J. Mater. Chem. A 2016, 4, 6902–6910. [Google Scholar] [CrossRef]
- Cho, H.M.; Chen, M.V.; MacRae, A.C.; Meng, Y.S. Effect of Surface Modification on Nano-Structured LiNi0.5Mn1.5O4 Spinel Materials. Acs Appl. Mater. Interfaces 2015, 7, 16231–16239. [Google Scholar] [CrossRef]
- Choi, M.; Ham, G.; Jin, B.S.; Lee, S.M.; Lee, Y.M.; Wang, G.X.; Kim, H.S. Ultra-thin Al2O3 coating on the acid-treated 0.3Li(2)MnO(3)center dot 0.7LiMn(0.60)Ni(0.25)Co(0.15)O(2) electrode for Li-ion batteries. J. Alloy. Compd. 2014, 608, 110–117. [Google Scholar] [CrossRef]
- Fang, X.; Ge, M.Y.; Rong, J.P.; Che, Y.C.; Aroonyadet, N.; Wang, X.L.; Liu, Y.H.; Zhang, A.Y.; Zhou, C.W. Ultrathin Surface Modification by Atomic Layer Deposition on High Voltage Cathode LiNi0.5Mn1.5O4 for Lithium Ion Batteries. Energy Technol. 2014, 2, 159–165. [Google Scholar] [CrossRef]
- Fang, X.; Lin, F.; Nordlund, D.; Mecklenburg, M.; Ge, M.Y.; Rong, J.P.; Zhang, A.Y.; Shen, C.F.; Liu, Y.H.; Cao, Y.; et al. Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. Adv. Funct. Mater. 2017, 27, 9. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.S.; Jeevarajan, J.A.; Wang, Y. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 2011, 3, 1465–1469. [Google Scholar] [CrossRef]
- Guan, D.S.; Wang, Y. Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries. Ionics 2013, 19, 1–8. [Google Scholar] [CrossRef]
- Jung, Y.S.; Cavanagh, A.S.; Dillon, A.C.; Groner, M.D.; George, S.M.; Lee, S.H. Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition. J. Electrochem. Society 2010, 157, A75–A81. [Google Scholar] [CrossRef]
- Jung, Y.S.; Cavanagh, A.S.; Riley, L.A.; Kang, S.H.; Dillon, A.C.; Groner, M.D.; George, S.M.; Lee, S.H. Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries. Adv. Mater. 2010, 22, 2172–2176. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, D.H.; Oh, D.Y.; Lee, H.; Kim, J.H.; Lee, J.H.; Jung, Y.S. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources 2015, 274, 1254–1262. [Google Scholar] [CrossRef]
- Kim, C.A.; Choi, H.J.; Lee, J.H.; Yoo, S.Y.; Kim, J.W.; Shim, J.H.; Kang, B. Influence of surface modification on electrochemical performance of high voltage spinel ordered-LiNi0.5Mn1.5O4 exposed to 5.3 V for 100 h before and after surface modification with ALD method. Electrochim. Acta 2015, 184, 134–142. [Google Scholar] [CrossRef]
- Koshtyal, Y.M.; Rumyantsev, A.M.; Maximov, M.Y.; Popovich, A.A.; Zhdanov, V.V. Li1,25Ni0,13Co0,13Mn0,54O2 Based Electrodes Modified by Alumina Thin Layers. In Proceedings of the International workshop Atomic Layer Deposition Russia 2015 (ALD Russia 2015), Moscow, Russia, 21–23 September 2015; pp. 65–66. [Google Scholar]
- Laskar, M.R.; Jackson, D.H.K.; Xu, S.Z.; Hamers, R.J.; Morgan, D.; Kuech, T.F. Atomic Layer Deposited MgO: A Lower Overpotential Coating for Li[Ni0.5Mn0.3Co0.2]O2 Cathode. Acs Appl. Mater. Interfaces 2017, 9, 11231–11239. [Google Scholar] [CrossRef]
- Li, X.F.; Liu, J.; Meng, X.B.; Tang, Y.J.; Banis, M.N.; Yang, J.L.; Hu, Y.H.; Li, R.Y.; Cai, M.; Sun, X.L. Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 2014, 247, 57–69. [Google Scholar] [CrossRef]
- Luan, X.N.; Guan, D.S.; Wang, Y. Enhancing High-Rate and Elevated-Temperature Performances of Nano-Sized and Micron-Sized LiMn2O4 in Lithium-Ion Batteries with Ultrathin Surface Coatings. J. Nanosci. Nanotechnol. 2012, 12, 7113–7120. [Google Scholar] [CrossRef] [Green Version]
- Mattelaer, F.; Vereecken, P.M.; Dendooven, J.; Detavernier, C. The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO2 and LiMn2O4 Lithium Ion Battery Electrodes. Adv. Mater. Interfaces 2017, 4, 11. [Google Scholar] [CrossRef]
- Park, J.S.; Meng, X.B.; Elam, J.W.; Hao, S.Q.; Wolverton, C.; Kim, C.; Cabana, J. Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries. Chem. Mater. 2014, 26, 3128–3134. [Google Scholar] [CrossRef]
- Patel, R.L.; Xie, H.; Park, J.; Asl, H.Y.; Choudhury, A.; Liang, X.H. Significant Capacity and Cycle-Life Improvement of Lithium-Ion Batteries through Ultrathin Conductive Film Stabilized Cathode Particles. Adv. Mater. Interfaces 2015, 2, 9. [Google Scholar] [CrossRef]
- Popovich, A.A.; Maksimov, M.Y.; Rumyantsev, A.M.; Novikov, P.A. Increasing the cyclic life of electrodes based on LiCoO2 used in lithium-ion batteries. J. App. Chem. 2015, 88, 831–832. [Google Scholar]
- Riley, L.A.; Van Ana, S.; Cavanagh, A.S.; Yan, Y.F.; George, S.M.; Liu, P.; Dillon, A.C.; Lee, S.H. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J. Power Sources 2011, 196, 3317–3324. [Google Scholar] [CrossRef]
- Scott, I.D.; Jung, Y.S.; Cavanagh, A.S.; An, Y.F.; Dillon, A.C.; George, S.M.; Lee, S.H. Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications. Nano Lett. 2011, 11, 414–418. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.H.; Qian, D.N.; Meng, Y.S. Ultrathin Al2O3 Coatings for Improved Cycling Performance and Thermal Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Material. Electrochim. Acta 2016, 203, 154–161. [Google Scholar] [CrossRef]
- Song, J.; Han, X.G.; Gaskell, K.J.; Xu, K.; Lee, S.B.; Hu, L.B. Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition. J. Nanoparticle Res. 2014, 16, 8. [Google Scholar] [CrossRef]
- Su, Y.T.; Cui, S.H.; Zhuo, Z.Q.; Yang, W.L.; Wang, X.W.; Pan, F. Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3. Acs Appl. Mater. Interfaces 2015, 7, 25105–25112. [Google Scholar] [CrossRef]
- Waller, G.H.; Brooke, P.D.; Rainwater, B.H.; Lai, S.Y.; Hu, R.; Ding, Y.; Alamgir, F.M.; Sandhage, K.H.; Liu, M.L. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime. J. Power Sources 2016, 306, 162–170. [Google Scholar] [CrossRef]
- Wise, A.M.; Ban, C.M.; Weker, J.N.; Misra, S.; Cavanagh, A.S.; Wu, Z.C.; Li, Z.; Whittingham, M.S.; Xu, K.; George, S.M.; et al. Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes. Chem. Mater. 2015, 27, 6146–6154. [Google Scholar] [CrossRef]
- Woo, J.H.; Trevey, J.E.; Cavanagh, A.S.; Choi, Y.S.; Kim, S.C.; George, S.M.; Oh, K.H.; Lee, S.H. Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries. J. Electrochem. Soc. 2012, 159, A1120–A1124. [Google Scholar] [CrossRef]
- Woo, J.H.; Travis, J.J.; George, S.M.; Lee, S.H. Utilization of Al2O3 Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries. J. Electrochem. Soc. 2015, 162, A344–A349. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.C.; Ahn, D.; Liu, Z.Y.; Kim, J.H.; Lu, P. Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries. Electrochem. Commun. 2013, 32, 31–34. [Google Scholar] [CrossRef]
- Xiao, B.W.; Wang, B.Q.; Liu, J.; Kaliyappan, K.; Sun, Q.; Liu, Y.L.; Dadheech, G.; Balogh, M.P.; Yang, L.; Sham, T.K.; et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AIPO(4) coating. Nano Energy 2017, 34, 120–130. [Google Scholar] [CrossRef]
- Xie, M.; Li, B.; Zhou, Y. Free-standing high-voltage LiCoO2/multi-wall carbon nanotube paper electrodes with extremely high areal mass loading for lithium ion batteries. J. Mater. Chem. A 2015, 3, 23180–23184. [Google Scholar] [CrossRef]
- Xie, M.; Hu, T.; Yang, L.; Zhou, Y. Synthesis of high-voltage (4.7 V) LiCoO2 cathode materials with Al doping and conformal Al2O3 coating by atomic layer deposition. Rsc Adv. 2016, 6, 63250–63255. [Google Scholar] [CrossRef]
- Yan, P.F.; Zheng, J.M.; Zhang, X.F.; Xu, R.; Amine, K.; Xiao, J.; Zhang, J.G.; Wang, C.M. Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance. Chem. Mater. 2016, 28, 857–863. [Google Scholar] [CrossRef]
- Zhang, X.F.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J.W.; Nie, A.M.; Chen, X.Q.; Yassar, R.S.; Axelbaum, R.L. Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD. Adv. Energy Mater. 2013, 3, 1299–1307. [Google Scholar] [CrossRef]
- Zhang, X.F.; Meng, X.B.; Elam, J.W.; Belharouak, I. Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode. Solid State Ion. 2014, 268, 231–235. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Wang, Y. Surface modifications of Li-ion battery electrodes with various ultrathin amphoteric oxide coatings for enhanced cycleability. J. Solid State Electrochem. 2013, 17, 1049–1058. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Aziz, S.; Wang, Y. Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J. Power Sources 2014, 247, 95–104. [Google Scholar] [CrossRef]
- Zhou, Y.; Lee, Y.H.; Sun, H.X.; Wallas, J.M.; George, S.M.; Xie, M. Coating Solution for High-Voltage Cathode: AlF3 Atomic Layer Deposition for Freestanding LiCoO2 Electrodes with High Energy Density and Excellent Flexibility. Acs Appl. Mater. Interfaces 2017, 9, 9614–9619. [Google Scholar] [CrossRef]
- Jung, Y.S.; Cavanagh, A.S.; Yan, Y.F.; George, S.M.; Manthiram, A. Effects of Atomic Layer Deposition of Al2O3 on the Li Li0.20Mn0.54Ni0.13Co0.13O2 Cathode for Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, A1298–A1302. [Google Scholar] [CrossRef]
- Kim, J.W.; Travis, J.J.; Hu, E.Y.; Nam, K.W.; Kim, S.C.; Kang, C.S.; Woo, J.H.; Yang, X.Q.; George, S.M.; Oh, K.H.; et al. Unexpected high power performance of atomic layer deposition coated Li Ni1/3Mn1/3Co1/3 O2 cathodes. J. Power Sources 2014, 254, 190–197. [Google Scholar] [CrossRef]
- Shi, Y.; Xing, Y.; Kim, K.; Yu, T.; Lipson, A.L.; Dameron, A.; Connell, J.G. Communication—Reduction of DC Resistance of Ni-Rich Lithium Transition Metal Oxide Cathode by Atomic Layer Deposition. J. Electrochem. Soc. 2021, 168, 040501. [Google Scholar] [CrossRef]
- Tesfamhret, Y.; Liu, H.; Chai, Z.; Berg, E.; Younesi, R. On the Manganese Dissolution Process from LiMn2O4 Cathode Materials. ChemElectroChem 2021, 8, 1516–1523. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Liu, Y.; Han, X.; Ren, Y.; Li, J.; Liu, Y.; Meng, X. Atomic-scale Constituting Stable Interface for Improved LiNi0.6Mn0.2Co0.2O2 Cathodes of Lithium-ion Batteries. Nanotechnology 2020, 32, 115401. [Google Scholar] [CrossRef]
- Kim, D.; Park, D.; Ko, C.H.; Shin, K.; Lee, Y.-S. Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method. J. Electrochem. Sci. Technol. 2021, 12, 237–245. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Chen, J.; Yang, J.; Li, Z.; Huang, Y.; Chen, Z.; Zou, Y.; Zheng, J.; Li, X. Atomic layer deposition of Al2O3 on LiNi0.68Co0.10Mn0.22O2 for enhanced electrochemical performance. Mater. Lett. 2020, 271, 127771. [Google Scholar] [CrossRef]
- Zhisen, Z.; Gao, D.; Yang, G.; Wu, Q.; Ren, X.; Zhang, P.; Li, Y. Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance battery. Nanotechnology 2020, 31, 454001. [Google Scholar] [CrossRef]
- Zhou, M. Structural and Electrochemical Properties of Li1.2Ni0.16Mn0.54Co0.08O2—Al2O3 Composite Prepared by Atomic Layer Deposition as the Cathode Material for LIBs. Int. J. Electrochem. Science 2020, 10759–10771. [Google Scholar] [CrossRef]
- Evenstein, E.; Rosy; Haber, S.; Sclar, H.; Houben, L.; Leung, K.; Leskes, M.; Noked, M. Atomic surface reduction of interfaces utilizing vapor phase approach: High energy LiNixMnyCoz oxide as a test case. Energy Storage Mater. 2019, 19, 261–269. [Google Scholar] [CrossRef]
- Han, B.; Key, B.; Lipton, A.S.; Vaughey, J.T.; Hughes, B.; Trevey, J.; Dogan, F. Influence of Coating Protocols on Alumina-Coated Cathode Material: Atomic Layer Deposition versus Wet-Chemical Coating. J. Electrochem. Soc. 2019, 166, A3679–A3684. [Google Scholar] [CrossRef]
- Hoskins, A.L.; McNeary, W.W.; Millican, S.L.; Gossett, T.A.; Lai, A.; Gao, Y.; Liang, X.; Musgrave, C.B.; Weimer, A.W. Nonuniform Growth of Sub-2 Nanometer Atomic Layer Deposited Alumina Films on Lithium Nickel Manganese Cobalt Oxide Cathode Battery Materials. ACS Appl. Nano Mater. 2019, 2, 6989–6997. [Google Scholar] [CrossRef]
- Huang, B.; Wang, R.; Gong, Y.; He, B.; Wang, H. Enhanced Cycling Stability of Cation Disordered Rock-Salt Li(1.2)Ti(0.4)Mn(0.4)O(2) Material by Surface Modification With Al(2)O(3). Front. Chem. 2019, 7, 107. [Google Scholar] [CrossRef]
- Jurng, S.; Heiskanen, S.K.; Chandrasiri, K.W.D.K.; Abeywardana, M.Y.; Lucht, B.L. Minimized Metal Dissolution from High-Energy Nickel Cobalt Manganese Oxide Cathodes with Al2O3 Coating and Its Effects on Electrolyte Decomposition on Graphite Anodes. J. Electrochem. Soc. 2019, 166, A2721–A2726. [Google Scholar] [CrossRef]
- Seung-Hyun Lee, D.; Im, W.B.; Liang, X. High density conductive LiFePO4 cathode with enhanced high-rate and high temperature performance. Mater. Chem. Phys. 2019, 232, 367–373. [Google Scholar] [CrossRef]
- Neudeck, S.; Mazilkin, A.; Reitz, C.; Hartmann, P.; Janek, J.; Brezesinski, T. Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries. Sci. Rep. 2019, 9, 5328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, H.; Sinha, S.; Park, J.; Gong, M.; Aravindan, V.; Heo, J.; Lee, Y.-S. Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition. J. Electrochem. Sci. Technol. 2019, 10, 196–205. [Google Scholar] [CrossRef]
- Yu, H.; Gao, Y.; Liang, X. Slightly Fluorination of Al2O3 ALD Coating on Li1.2Mn0.54Co0.13Ni0.13O2 Electrodes: Interface Reaction to Create Stable Solid Permeable Interphase Layer. J. Electrochem. Soc. 2019, 166, A2021–A2027. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Liu, T.; Xie, Z.; Wang, Y.; Tian, K.; Bu, L.; Wang, H.; Gao, L.; Zhao, J. Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycleability at Extended Voltage Ranges. Coatings 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Park, J.; Liang, X. Synergic Titanium Nitride Coating and Titanium Doping by Atomic Layer Deposition for Stable- and High-Performance Li-Ion Battery. J. Electrochem. Soc. 2018, 165, A3871–A3877. [Google Scholar] [CrossRef]
- Østli, E.R.; Tesfamhret, Y.; Wenner, S.; Lacey, M.J.; Brandell, D.; Svensson, A.M.; Selbach, S.M.; Wagner, N.P. Limitations of Ultrathin Al2O3 Coatings on LNMO Cathodes. ACS Omega 2021, 6, 30644–30655. [Google Scholar] [CrossRef]
- Jackson, D.H.K.; Kuech, T.F. Electrochemical effects of annealing on atomic layer deposited Al2O3 coatings on LiNi0.5Mn0.3Co0.2O2. J. Power Sources 2017, 365, 61–67. [Google Scholar] [CrossRef]
- Young, M.J.; Letourneau, S.; Warburton, R.E.; Dose, W.M.; Johnson, C.; Greeley, J.; Elam, J.W. High-Rate Spinel LiMn2O4 (LMO) Following Carbonate Removal and Formation of Li-Rich Interface by ALD Treatment. J. Phys. Chem. C 2019, 123, 23783–23790. [Google Scholar] [CrossRef]
- David, L.; Dahlberg, K.; Mohanty, D.; Ruther, R.E.; Huq, A.; Chi, M.; An, S.J.; Mao, C.; King, D.M.; Stevenson, L.; et al. Unveiling the Role of Al2O3 in Preventing Surface Reconstruction During High-Voltage Cycling of Lithium-Ion Batteries. ACS Appl. Energ. Mater. 2019, 2, 1308–1313. [Google Scholar] [CrossRef]
- Haridas, A.K.; Nguyen, Q.A.; Song, B.F.; Blaser, R.; Biswal, S.L. ALD-Modified LiNi0.33Mn0.33Co0.33O2 Paired with Macroporous Silicon for Lithium-Ion Batteries: An Investigation on Lithium Trapping, Resistance Rise, and Cycle-Life Performance. ACS Appl. Energ. Mater. 2020, 3, 456–468. [Google Scholar] [CrossRef]
- He, Y.; Pham, H.; Gao, Y.; Patel, R.L.; Sarkar, S.; Liang, X.; Park, J. Discovery of an Unexpected Metal Dissolution of Thin-Coated Cathode Particles and Its Theoretical Explanation. Adv. Theory Simul. 2020, 3, 2000002. [Google Scholar] [CrossRef]
- Warburton, R.E.; Young, M.J.; Letourneau, S.; Elam, J.W.; Greeley, J. Descriptor-Based Analysis of Atomic Layer Deposition Mechanisms on Spinel LiMn2O4 Lithium-Ion Battery Cathodes. Chem. Mater. 2020, 32, 1794–1806. [Google Scholar] [CrossRef]
- Negi, R.S.; Culver, S.P.; Wiche, M.; Ahmed, S.; Volz, K.; Elm, M.T. Optimized atomic layer deposition of homogeneous, conductive Al2O3 coatings for high-nickel NCM containing ready-to-use electrodes. Phys. Chem. Chem. Phys. 2021, 23, 6725–6737. [Google Scholar] [CrossRef]
- Laskar, M.R.; Jackson, D.H.K.; Guan, Y.X.; Xu, S.Z.; Fang, S.Y.; Dreibelbis, M.; Mahanthappa, M.K.; Morgan, D.; Hamers, R.J.; Kuech, T.F. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for LiNi0.5Mn0.3Co0.2O2 Cathode to Improve Rate Performance in Li-Ion Battery. Acs Appl. Mater. Interfaces 2016, 8, 10572–10580. [Google Scholar] [CrossRef]
- Jackson, D.H.K.; Laskar, M.R.; Fang, S.Y.; Xu, S.Z.; Ellis, R.G.; Li, X.Q.; Dreibelbis, M.; Babcock, S.E.; Mahanthappa, M.K.; Morgan, D.; et al. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes. J. Vac. Sci. Technol. A 2016, 34, 8. [Google Scholar] [CrossRef]
- Shapira, A.; Tiurin, O.; Solomatin, N.; Auinat, M.; Meitav, A.; Ein-Eli, Y. Robust AlF3 Atomic Layer Deposition Protective Coating on LiMn1.5Ni0.5O4 Particles: An Advanced Li-Ion Battery Cathode Material Powder. ACS Appl. Energ. Mater. 2018, 1, 6809–6823. [Google Scholar] [CrossRef]
- Deng, S.; Xiao, B.; Wang, B.; Li, X.; Kaliyappan, K.; Zhao, Y.; Lushington, A.; Li, R.; Sham, T.-K.; Wang, H.; et al. New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes. Nano Energy 2017, 38, 19–27. [Google Scholar] [CrossRef]
- Henderick, L.; Hamed, H.; Mattelaer, F.; Minjauw, M.; Meersschaut, J.; Dendooven, J.; Safari, M.; Vereecken, P.; Detavernier, C. Atomic Layer Deposition of Nitrogen-Doped Al Phosphate Coatings for Li-Ion Battery Applications. ACS Appl. Mater. Interfaces 2020, 12, 25949–25960. [Google Scholar] [CrossRef]
- Park, J.S.; Mane, A.U.; Elam, J.W.; Croy, J.R. Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries. Chem. Mater. 2015, 27, 1917–1920. [Google Scholar] [CrossRef]
- Patel, R.L.; Palaparty, S.A.; Liang, X.H. Ultrathin Conductive CeO2 Coating for Significant Improvement in Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials. J. Electrochem. Soc. 2017, 164, A6236–A6243. [Google Scholar] [CrossRef]
- Sarkar, S.; Patel, R.L.; Liang, X.; Park, J. Unveiling the Role of CeO2 Atomic Layer Deposition Coatings on LiMn2O4 Cathode Materials: An Experimental and Theoretical Study. ACS Appl. Mater. Interfaces 2017, 9, 30599–30607. [Google Scholar] [CrossRef]
- Sarkar, S.; Patel, R.; Liang, X.; Park, J. A Comprehensive Understanding on How Ultrathin Coating Layers on Active Particles Enhance Battery Performance Significantly. ECS Trans. 2017, 77, 425–436. [Google Scholar] [CrossRef]
- Patel, R.L.; Jiang, Y.B.; Choudhury, A.; Liang, X.H. Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles. Sci. Rep. 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; He, X.; Ma, L.; Wu, T.; Park, J.; Liang, X. Understanding cation doping achieved by atomic layer deposition for high-performance Li-Ion batteries. Electrochim. Acta 2020, 340, 135951. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, Z.; He, X.; White, T.; Park, J.; Liang, X. Cooperating effects of conformal iron oxide (FeOx) ALD coating and post-annealing on Li-Rich layered cathode materials. Electrochim. Acta 2019, 318, 513–524. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, H.; Sandineni, P.; He, X.; Choudhury, A.; Park, J.; Liang, X. Fe Doping in LiMn1.5Ni0.5O4 by Atomic Layer Deposition Followed by Annealing: Depths and Occupation Sites. J. Phys. Chem. C 2021, 125, 7560–7567. [Google Scholar] [CrossRef]
- Xiao, B.W.; Liu, J.; Sun, Q.; Wang, B.Q.; Banis, M.N.; Zhao, D.; Wang, Z.Q.; Li, R.Y.; Cui, X.Y.; Sham, T.K.; et al. Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High-Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material. Adv. Sci. 2015, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Kitsche, D.; Tang, Y.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T. High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte. ACS Appl. Energ. Mater. 2021, 4, 7338–7345. [Google Scholar] [CrossRef]
- Tiurin, O.; Solomatin, N.; Auinat, M.; Ein-Eli, Y. Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. J. Power Sources 2020, 448, 227373. [Google Scholar] [CrossRef]
- Hallot, M.; Caja-Munoz, B.; Leviel, C.; Lebedev, O.I.; Retoux, R.; Avila, J.; Roussel, P.; Asensio, M.C.; Lethien, C. Atomic Layer Deposition of a Nanometer-Thick Li3PO4 Protective Layer on LiNi0.5Mn1.5O4 Films: Dream or Reality for Long-Term Cycling? ACS Appl. Mater. Interfaces 2021, 13, 15761–15773. [Google Scholar] [CrossRef]
- Li, X.F.; Liu, J.; Banis, M.N.; Lushington, A.; Li, R.Y.; Cai, M.; Sun, X.L. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 2014, 7, 768–778. [Google Scholar] [CrossRef]
- Wang, E.; Zhao, Y.; Xiao, D.; Zhang, X.; Wu, T.; Wang, B.; Zubair, M.; Li, Y.; Sun, X.; Yu, H. Composite Nanostructure Construction on the Grain Surface of Li-Rich Layered Oxides. Adv. Mater. 2020, 32, 1906070. [Google Scholar] [CrossRef]
- Ahaliabadeh, Z.; Miikkulainen, V.; Mäntymäki, M.; Mousavihashemi, S.; Lahtinen, J.; Lide, Y.; Jiang, H.; Mizohata, K.; Kankaanpää, T.; Kallio, T. Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li–Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials. ACS Appl. Mater. Interfaces 2021, 13, 42773–42790. [Google Scholar] [CrossRef]
- Kraytsberg, A.; Drezner, H.; Auinat, M.; Shapira, A.; Solomatin, N.; Axmann, P.; Wohlfahrt-Mehrens, M.; Ein-Eli, Y. Atomic Layer Deposition of a Particularized Protective MgF2 Film on a Li-Ion Battery LiMn1.5Ni0.5O4 Cathode Powder Material. ChemNanoMat 2015, 1, 577–585. [Google Scholar] [CrossRef]
- Aribia, A.; Sastre, J.; Chen, X.; Gilshtein, E.; Futscher, M.; Tiwari, A.; Romanyuk, Y. In Situ Lithiated ALD Niobium Oxide for Improved Long Term Cycling of Layered Oxide Cathodes:A Thin-Film Model Study. J. Electrochem. Soc. 2021, 168, 040513. [Google Scholar] [CrossRef]
- Su, Y.; Gu, D.; Shao, Y.; Wang, X.; Pan, F. Improved electrochemical performance of LiNi0.5Mn0.3Co0.2O2 electrodes coated by atomic-layer-deposited Ta2O5. Funct. Mater. Lett. 2018, 12, 1850103. [Google Scholar] [CrossRef]
- Qin, C.C.; Cao, J.L.; Chen, J.; Dai, G.L.; Wu, T.F.; Chen, Y.B.; Tang, Y.F.; Li, A.D.; Chen, Y.F. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating. Dalton Trans. 2016, 45, 9669–9675. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, J.-W.; Yu, Y.-H.; Lai, K.-H.; Chiu, K.-F.; Kei, C.-C. Electrochemical and Structural Investigation on Ultrathin ALD ZnO and TiO2 Coated Lithium-Rich Layered Oxide Cathodes. ACS Sustain. Chem. Eng. 2018, 6, 16941–16950. [Google Scholar] [CrossRef]
- Zhang, C.; Su, J.; Wang, T.; Yuan, K.; Chunguag, C.; Liu, S.; Huang, T.; Wu, J.-H.; Lu, H.; Yu, A. Significant Improvement on Electrochemical Performance of LiMn2O4 at Elevated Temperature by Atomic Layer Deposition of TiO2 Nanocoating. ACS Sustain. Chem. Eng. 2018, 6, 7890–7901. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Chao, C.-H.; Ke, W.-J.; Lin, Y.-F.; Liu, H.-W.; Gandomi, Y.A.; Gu, S.; Su, C.-Y.; Chang, J.-K.; Li, J.; et al. Roll-To-Roll Atomic Layer Deposition of Titania Nanocoating on Thermally Stabilizing Lithium Nickel Cobalt Manganese Oxide Cathodes for Lithium Ion Batteries. ACS Appl. Energ. Mater. 2020, 3, 10619–10631. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, J.-W.; Yu, Y.-H.; Lai, K.-H.; Lee, S.-M.; Chiu, K.-F.; Kei, C.-C. Nanolaminated ZnO–TiO2 coated lithium-rich layered oxide cathodes by atomic layer deposition for enhanced electrochemical performances. J. Alloy. Compd. 2020, 842, 155845. [Google Scholar] [CrossRef]
- Deng, S.; Wang, B.; Yuan, Y.; Li, X.; Sun, Q.; Doyle-Davis, K.; Banis, M.N.; Liang, J.; Zhao, Y.; Li, J.; et al. Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy 2019, 65, 103988. [Google Scholar] [CrossRef]
- Henderick, L.; Hamed, H.; Mattelaer, F.; Minjauw, M.; Nisula, M.; Meersschaut, J.; Dendooven, J.; Safari, M.; Vereecken, P.; Detavernier, C. Plasma enhanced atomic layer deposition of a (nitrogen doped) Ti phosphate coating for improved energy storage in Li-ion batteries. J. Power Sources 2021, 497, 229866. [Google Scholar] [CrossRef]
- Prasadam, V.P.; Bahlawane, N.; Mattelaer, F.; Rampelberg, G.; Detavernier, C.; Fang, L.; Jiang, Y.; Martens, K.; Parkin, I.P.; Papakonstantinou, I. Atomic layer deposition of vanadium oxides: Process and application review. Mater. Today Chem. 2019, 12, 396–423. [Google Scholar] [CrossRef]
- Aziz, S.; Zhao, J.Q.; Cain, C.; Wang, Y. Nanoarchitectured LiMn2O4/Graphene/ZnO Composites as Electrodes for Lithium Ion Batteries. J. Mater. Sci. Technol. 2014, 30, 427–433. [Google Scholar] [CrossRef]
- Kong, J.Z.; Ren, C.; Tai, G.A.; Zhang, X.; Li, A.D.; Wu, D.; Li, H.; Zhou, F. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J. Power Sources 2014, 266, 433–439. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Wang, Y. Ultrathin Surface Coatings for Improved Electrochemical Performance of Lithium Ion Battery Electrodes at Elevated Temperature. J. Phys. Chem. C 2012, 116, 11867–11876. [Google Scholar] [CrossRef]
- Kong, J.Z.; Wang, S.S.; Tai, G.A.; Zhu, L.; Wang, L.G.; Zhai, H.F.; Wu, D.; Li, A.D.; Li, H. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J. Alloy. Compd. 2016, 657, 593–600. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Qu, G.Y.; Flake, J.C.; Wang, Y. Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes. Chem. Commun. 2012, 48, 8108–8110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Q.; Wang, Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature. Nano Energy 2013, 2, 882–889. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Cai, J.; Han, X.; Geng, D.; Li, J.; Meng, X. Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries. J. Mater. Sci. Technol. 2020, 54, 77–86. [Google Scholar] [CrossRef]
- Bao, W.; Qian, G.; Zhao, L.; Yu, Y.; Su, L.; Cai, X.; Zhao, H.; Zuo, Y.; Zhang, Y.; Li, H.; et al. Simultaneous Enhancement of Interfacial Stability and Kinetics of Single-Crystal LiNi0.6Mn0.2Co0.2O2 through Optimized Surface Coating and Doping. Nano Letters 2020, 20, 8832–8840. [Google Scholar] [CrossRef] [PubMed]
- Comstock, D.J.; Elam, J.W. Mechanistic Study of Lithium Aluminum Oxide Atomic Layer Deposition. Journal of Physical Chemistry C 2013, 117, 1677–1683. [Google Scholar] [CrossRef]
- Lee, Y.; DuMont, J.W.; Cavanagh, A.S.; George, S.M. Atomic Layer Deposition of AlF3 Using Trimethylaluminum and Hydrogen Fluoride. J. Phys. Chem. C 2015, 119, 14185–14194. [Google Scholar] [CrossRef]
- Xing, W. High Energy Density Li-Ion Batteries with ALD Multi-Functional Modified LiCoO2 Cathode. ECS Trans. 2017, 80, 55–63. [Google Scholar] [CrossRef]
- Tiurin, O.; Ein-Eli, Y. A Critical Review: The Impact of the Battery Electrode Material Substrate on the Composition and Properties of Atomic Layer Deposition (ALD) Coatings. Adv. Mater. Interfaces 2019, 6, 1901455. [Google Scholar] [CrossRef]
- Liu, Y.; Hudak, N.S.; Huber, D.L.; Limmer, S.J.; Sullivan, J.P.; Huang, J.Y. In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al2O3 Layers during Lithiation-Delithiation Cycles. Nano Lett. 2011, 11, 4188–4194. [Google Scholar] [CrossRef]
- Tebbe, J.L.; Holder, A.M.; Musgrave, C.B. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings. Acs Appl. Mater. Interfaces 2015, 7, 24265–24278. [Google Scholar] [CrossRef]
- Seid, K.A.; Badot, J.C.; Dubrunfaut, O.; Caldes, M.T.; Stephant, N.; Gautier, L.; Guyomard, D.; Lestriez, B. Multiscale electronic transport in Li1+xNi1/3-uCo1/3-vMn1/3-wO2: A broadband dielectric study from 40 Hz to 10 GHz. Phys. Chem. Chem. Phys. 2013, 15, 19790–19798. [Google Scholar] [CrossRef]
- Tatsuo, N. Express Charging/Discharging Lithium Ion Secondary Batteries. Tech. News 2008, 11, 3–18. [Google Scholar]
- Guo, W.; Zhang, C.; Zhang, Y.; Lin, L.; He, W.; Xie, Q.; Sa, B.; Wang, L.; Peng, D.-L. A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials. Adv. Mater. 2021, 33, 2103173. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Xu, S.; Huang, S.; Zhu, J. Synthesis and Electrochemical Properties of LiNi(0.5)Mn(1.5)O(4) Cathode Materials with Cr(3+) and F(−) Composite Doping for Lithium-Ion Batteries. Nanoscale Res. Lett. 2017, 12, 414. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, J.; Tuller, H.L.; Lantto, V. Electronic Conductivity and Dielectric Properties of Nanocrystalline CeO2 Films. J. Electroceram. 2004, 13, 129–133. [Google Scholar] [CrossRef]
- Sarah, M.; Musa, M.; Asiah, M.; Rusop, M. Electrical conductivity characteristics of TiO2 thin film. In Proceedings of the 2010 International Conference on Electronic Devices, Systems and Applications, ICEDSA 2010—Proceedings, Kuala Lumpur, Malaysia, 11–14 April 2010. [Google Scholar] [CrossRef]
- Caglar, M.; Ilican, S.; Caglar, Y.; Yakuphanoglu, F. Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 2009, 255, 4491–4496. [Google Scholar] [CrossRef]
- Kuo, D.H.; Chien, C.H.; Huang, C.H. Zirconia and zirconia–silica thin films deposited by magnetron sputtering. Thin Solid Film. 2002, 420–421, 47–53. [Google Scholar] [CrossRef]
- Park, J.S.; Mane, A.U.; Elam, J.W.; Croy, J.R. Atomic Layer Deposition of Al–W–Fluoride on LiCoO2 Cathodes: Comparison of Particle- and Electrode-Level Coatings. ACS Omega 2017, 2, 3724–3729. [Google Scholar] [CrossRef] [Green Version]
- Riyanto, E.; Martides, E.; Pikra, G.; Atmaja, T.D.; Pramana, R.I.; Purwanto, A.J.; Santosa, A.; Junianto, E.; Darussalam, R.; Saepudin, A.; et al. A review of atomic layer deposition for high lithium-ion battery performance. J. Mater. Res. Technol. 2021, 15, 5466–5481. [Google Scholar] [CrossRef]
- Wu, K.; Li, W.; Qin, J.; Hao, Y.; Kheimeh Sari, H.M.; Feng, H.; Li, X. Controllable atomic layer deposition coatings to boost the performance of LiMnxCoyNi1−x−yO2 in lithium-ion batteries: A review. J. Mater. Res. 2020, 35, 762–774. [Google Scholar] [CrossRef]
P/E | Coating | Reagent | T, °C (Time, h) | nC (Optimum) | Growth Per Cycle, Å/Cycle | Reference | |
---|---|---|---|---|---|---|---|
A | B | ||||||
P | Al2O3 | TMA | H2O | 180 | 2, 6, 10, 20 | 2.2 | [39] |
– | – | 450 (10) | 20 | – | |||
– | – | – | 2, 4, 6, 10 | – | [58] | ||
TMA | H2O | 180 | 2, 25 | ≈2 | [63] | ||
– | – | 700 (4, 8,16) | 25 | – | |||
ZnO | DEZ | H2O | 180 | 4 | – | [39] | |
ZrO2 | Zr(NMe2)4 | H2O | 100 | 2 | 1.3 | [45] | |
E | Al2O3 | TMA | H2O | 180 | 2, 6, 10, 20 | 2.2 | [39] |
TMA | H2O | 180 | 2, 20 | – | [40] | ||
– | – | – | 2, 6 | ≈2.5 | [52] | ||
TMA | H2O | 150 | 10, 50, 100, 500 | – | [31] | ||
TMA | H2O | – | <10 | 1.1 | [25] | ||
TMA | H2O | 150 | 2, 5, 10, 50 | 1.3 | [45] | ||
TMA | H2O | 150 | 10, 20, 30 | – | [50] | ||
TMA | H2O | 180 | 30 | ≈1 | [32] | ||
TMA | H2O | 180 | 2 | – | [62] | ||
TMA | H2O | 150 | 2 | – | [69] | ||
AlF3 | TMA | HF:Py | 150 | 2, 5, 8 | – | [69] | |
AlWxFy | TMA | WF6 | 200 | 4 | 2.56 | [103] | |
NbOx | Nb(OEt)5 | H2O | 175 | (15 nm, 30 nm, 60 nm) | 0.42 | [119] | |
TiO2 | TTIP | H2O | 150 | 10, 50, 100, 500 | – | [31] | |
TTIP | H2O | 85 | 2 | 1.5 | [45] | ||
ZrO2 | Zr(NMe2)4 | H2O | 100 | 2 | 1.3 | [45] |
P/E | Coating | Reagent | T, °C (Time, h) | nC (Optimum) | Growth Per Cycle, Å/Cycle | Reference | |
---|---|---|---|---|---|---|---|
A | B | ||||||
P | Al2O3 | TMA | H2O | 120 | 6, 50, 412 | ≈1.2 | [46] |
TMA | H2O | 120 | 4, 6, 8 | 1.5 | [38] | ||
TMA | H2O | 120 | 6, 50 | ≈1.1 | [67] | ||
TMA | H2O | 177 | 5 | – | [49] | ||
TMA | H2O | 120 | 5 (0.19 nm), 10 (0.31 nm) | – | [73] | ||
TMA | H2O | 120 | 5 (0.6 nm), 10 (1 nm), 20 (1.7 nm) | – | [90] | ||
TMA | H2O | 177 | 5, 10 (1.5 nm), 25 (3 nm) | – | [95] | ||
TMA | H2O | 200 | 1 | – | [96] | ||
TMA | – | 1 | – | ||||
CeO2 | Ce(iPrCp)3 | H2O | 250 | 10, 30, 50, 100, 150 | 0.6 | [49] | |
Ce(iPrCp)3 | H2O | 250 | (2, 3, 5 nm) | – | [105] | ||
Ce(iPrCp)3 | H2O | 250 | 30 (1.5 nm), 50 (3 nm), 100 (5 nm) | – | [95] | ||
ZnO | DEZ | H2O | 120 | 2, 6, 10, 50 | 1.7 | [131] | |
DEZ | H2O | 120 | 6, 50 | – | [129] | ||
DEZ | H2O | 120 | 6, 50 | ≈1.7 | [67] | ||
ZrO2 | Zr(O(CH3)3)4 | H2O | 120 | 2, 6, 10, 50,300 | – | [133] | |
Zr(O(CH3)3)4 | H2O | 120 | 6, 50 | 2.9 | [67] | ||
Zr(O(CH3)3)4 | H2O | 120 | 2, 6, 10 | ≈2 | [134] | ||
– | – | 450 (3) | 6 | – | |||
Zr(NMe2)4 | H2O | 250 | 5 | – | [49] | ||
E | Al2O3 | TMA | H2O | 120 | 4, 10, 20 | 2 | [37] |
TMA | H2O | 120 | 6, 50, 412 | ≈1.2 | [46] | ||
TMA | H2O | 120 | 4, 6, 8 | 1.5 | [38] | ||
TMA | H2O | 120 | 6, 50 | ≈1.1 | [67] | ||
TMA | H2O | 175 | 10, 50 | ≈1 | [56] | ||
TMA | H2O | 100 | 1 nm | – | [47] | ||
TiO2 | TDMAT | H2O | 150 | 5 nm | – | ||
TDMAT | H2O | 120 | 10, 15, 40, 100 | 0.65 | [123] | ||
ZnO | DEZ | H2O | 120 | 2, 6, 10, 50 | 1.7 | [131] | |
DEZ | H2O | 120 | 6, 50 | – | [129] | ||
DEZ | H2O | 120 | 6, 50 | ≈1.7 | [67] | ||
ZrO2 | Zr(O(CH3)3)4 | H2O | 120 | 2, 6, 10, 50,300 | – | [133] | |
Zr(O(CH3)3)4 | H2O | 120 | 6, 50 | 2.9 | [67] | ||
– | Al2O3 | TMA | H2O | – | 1 | – | [92] |
(XYZ) | P/E | Coating | Reagent | T, °C (Time, h) | nC (Optimum) | Growth Per Cycle, Å/Cycle | Reference | |
---|---|---|---|---|---|---|---|---|
A | B | |||||||
(111) | P | Al2O3 | TMA | H2O | – | 2, 4, 6, 10 | 2.2 | [51] |
TMA | H2O | 180 | 4 | 1.3 | [71] | |||
– | – | 300 (12) | – | – | ||||
TMA | H2O | 120 | 2, 4 (1 nm), 6, 7, 10, 12, 15 (3–3.2 nm) | 2.2 | [81] | |||
E | Al2O3 | TMA | H2O | 85 | 8, 15, 30 (≈3 nm), 60, 100 | 0.99 | [94] | |
LiTaO3 | 1× LiOtBu | H2O | 225 | 2, 5, 10, 20 | ≈2.5 | [115] | ||
6× Ta(OEt)5 | H2O | 225 | ||||||
(424) | Al2O3 | TMA | H2O | 120 | 4 | 1.1–1.5 | [57] | |
(523) | P | Al2O3 | TMA | H2O | 200 | 5 | 1.2 | [44] |
TMA | H2O | 180 | 2, 8 | – | [80] | |||
TMA | H2O | 100 | 5 | 1 | [91] | |||
Al2O3-Ga2O3 | TMA, TMG | H2O +O3 | 200 | 2, 5 | 0.9–1.1 | [98] | ||
AlF3 | TMA | TaF5 | 125 | 5 | – | [99] | ||
MgO | Mg[EtCp]2 | H2O | 200 | 5 | 1.4 | [44] | ||
ZnO | DEZ | H2O | 100 | 8 | ≈1.7 | [130] | ||
ZrO2 | Zr(NMe2)4 | H2O | 150 | 2, 5, 8 | 1.9 | [132] | ||
Zr(NMe2)4 | H2O | 200 | 5 | 0.8 | [44] | |||
E | Al2O3 | TMA | H2O | 120 | 2, 5, 8, 10 | 1.0–3.0 | [55] | |
TMA | H2O | 180 | 2, 4, 8, 15 | 1.1 | [53] | |||
Ta2O5 | Ta(OEt)5 | H2O | 200 | 2, 5, 10 | 0.8 | [120] | ||
TiO2 | TTIP | H2O | 120, 150, 180 | ≈100 | – | [124] | ||
(622) | P | Al2O3 | TMA | H2O | 110 | 4 (0.5 nm), 10 (1.3 nm), 40 (5.3 nm) | ≈1.3 | [85] |
Al2O3 | TMA | H2O | 100 | 10 (≈1 nm), 20 (≈ 2 nm), 40 (≈4 nm) | ≈1.1–1.2 | [74] | ||
AlPO4 | 1× TMPO | O2pl | – | 2 (≈1 nm) | – | [102] | ||
1× TMA | ||||||||
AlPON | 1× DEPA | N2pl | – | 1 (≈1 nm), (20 nm) | – | |||
1× TMA | ||||||||
TiO2 | TiCl4 | H2O | 200 | 139 | 0.36 | [121] | ||
TiPO4 | TMPO | TTIP | – | – | – | [127] | ||
O2pl | ||||||||
TiPON | DEPA | TTIP | – | (2 nm) | 6 | [127] | ||
N2pl | ||||||||
ZrO2 | Zr(NMe2)4 | H2O | 150 | 2, 5 (≈1.2 nm), 8, 50 | – | [136] | ||
E | Al2O3 | TMA | H2O | 120 | 5 | 1 | [97] | |
(622) | E | LixTiyOz | 4× TTIP | H2O | 200 | 10 | 1.8 | [117] |
1× LiOtBu | H2O | |||||||
TiOx | TTIP | H2O | 200 | 50 | 0.33 | [117] | ||
ZrO2 | Zr(NMe2)4 | H2O | 100 | 5 (0.8 nm), 20 (≈3.2 nm), 40 (6.5 nm) | 1.62 | [135] | ||
FCG (713) | P | Al2O3 | TMA | – | 180 | (1 nm) | – | [76] |
(811) | Al2O3 | TMA | H2O | 150 | 2, 5, 10 | – | [86] | |
TMA | H2O | 120 | 10, 20 (2.2 nm), 50 (5.6 nm) | 1.12 | [88] | |||
TMA | H2O | 100 | 10 (≈3.4 nm) | – | [75] | |||
TMA | H2O | – | – | – | [93] | |||
E | Al2O3 | TMA | H2O | 120 | 5 | 1 | [97] | |
FCG (811) | P | Al2O3 | TMA | H2O | – | – | – | [7] |
NCA | TiO2 | TiCl4 | H2O | – | – | – | ||
FCG (1011) | Al2O3 | TMA | H2O | 150 | – | – | [72] | |
(851005) | HfO2 | TEMAH | O3 | 250 | 20 | 0.43 | [112] | |
(71575) | E | Al2O3 | TMA | H2O | 120 | 5 | 1 | [97] |
P/E | Coating | Reagent | T, °C (Time, h) | nC (Optimum) | Growth Per Cycle, Å/Cycle | Reference | |
---|---|---|---|---|---|---|---|
A | B | ||||||
P | Al2O3 | TMA | H2O | 250 | 5, 10, 15, 30 | ≈0.8 | [33] |
TMA | H2O | 180 | 0, 2, 4, 6, 10 | 2 | [41] | ||
TMA | H2O | 225 | 5 | – | [42] | ||
AlF3 | 1× TMA | O3 | 150 | 2 (≈2.4 nm), 4 (≈4.6 nm) | – | [100] | |
1× Hfac | O3 | ||||||
1× TMA | O3 | 240 | 2 | – | |||
1× Hfac | O3 | ||||||
CeO2 | Ce(iPrCp)3 | H2O | 250 | 30, 40, 50, 70, 100 | 0.6 | [104] | |
FeOx | FeCp2 | O2 | 450 | 10, 20, 25, 30, 40, 80, 160 | 0.2 | [107] | |
P | FeOx | FeCp2 | O2 | 450 | 50 | – | [108] |
FeCp2 | O2 | 450 | – | – | [110] | ||
FePO4 | 1× FeCp2 | O3 | 300 | 5, 10, 20, 40 | 1 | [111] | |
1× (CH3)3PO4 | H2O | ||||||
MgF2 | 1× Mg[EtCp]2 | O3 | 275 | 4, 6, 12 | 0.65, 0.59, 0.48 | [118] | |
1× Hfac | O3 | ||||||
LiF | LiOtBu | Hfac | 220 | 4 | – | [113] | |
LiOtBu | TiF4 | – | |||||
Li3PO4 | LiOtBu | TMPO | 250 | – | – | [126] | |
TiO2 | TiCl4 | H2O | 250 | 11, 15, 30, 50 | ≈0.4 | [33] | |
TTIP | H2O | 250 | – | – | [126] | ||
TiO2-Li3PO4 | TTIP | H2O | 250 | 10 (1 nm), 50 (5 nm) | – | [126] | |
LiOtBu | TMPO | ||||||
E | Al2O3 | TMA | H2O | 90 | 3, 10, 30 | 1.2 | [35] |
– | – | – | 0.55–5 nm | – | [60] | ||
TMA | H2O | 150 | 4, 6 | 1 | [54] | ||
TMA | H2O | 90 | 10 | 1.2 | [36] | ||
TMA | H2O | – | 2, 5,10 | – | [48] | ||
AlPO4 | 1× TMPO | H2O | 250 | 2, 5, 10, 20, 50 | – | [101] | |
1× TMA | H2O | ||||||
LiAlO2 | 1× TMA | H2O | 225 [137] | 5, 10 | – | [48] | |
1× LiOtBu | H2O | ||||||
Li3PO4 | TMPO | LiOtBu | 300 | 17 (1 nm), 50 (3 nm), 83 (5 nm) | 0.6 | [114] |
Mt | P/E | Coating | Reagent | T, °C (Time, h) | nC (Optimum) | Growth Per Cycle, Å/Cycle | Reference | |
---|---|---|---|---|---|---|---|---|
A | B | |||||||
L1 | P | Al2O3 | TMA | H2O | 180 | 2, 6, 20 | – | [70] |
TMA | H2O | 150 | 10 | 2–3 | [65] | |||
TMA | H2O | 120 | 6 | – | [68] | |||
TMA | H2O | 150 | 20 | – | [61] | |||
AlPO4 | 1× TMA | H2O | 250 | 5, 10, 20 | 2 | [61] | ||
1× (CH3)3PO4 | H2O | |||||||
TiO2 | TTIP | H2O | 150 | 20 | <2 | [65] | ||
ZnO | DEZ | H2O | 120 | 2, 6, 10 | ≈1.9 | [68] | ||
ZrO2 | Zr(O(CH3)3)4 | H2O | 120 | 6 | ≈1.3 | |||
E | Al2O3 | TMA | H2O | 180 | 2, 6, 20 | – | [70] | |
– | – | 300 (3) | 2, 6, 20 | – | ||||
TMA | H2O | 150 | 10, 20 | – | [43] | |||
TMA | H2O | 100 | 2, 4, 6 | – | [87] | |||
Al2O3- AlF3 | 1× TMA | HF | 1 | – | ||||
5× TMA | H2O | |||||||
Al2O3- AlF3 | 2× TMA | HF | – | |||||
4× TMA | H2O | |||||||
Al2O3- AlF3 | 4× TMA | HF | – | |||||
2× TMA | H2O | |||||||
L1 | E | Al2O3- AlF3 | 5× TMA | HF | 100 | 1 | – | [87] |
1× TMA | H2O | |||||||
AlF3 | TMA | HF | 2, 4, 6, 8 | – | ||||
L2 | E | Al2O3 | TMA | H2O | 80 | 0, 0.5, 1.2, 3.4 nm | – | [29] |
TMA | H2O | 120 | 5, 100 | – | [30] | |||
LiAlOx | TMA | H2O | – | 6 | – | |||
LiOtBu | H2O | – | 6 | – | ||||
TiO2 | TTIP | H2O | 100 | 6 | – | |||
TTIP | H2O | 150 | 6 | – | ||||
ZrO2 | Zr(NMe2)4 | H2O | 100 | 6 | – | |||
Zr(NMe2)4 | H2O | 150 | 6 | – | ||||
L3 | E | Al2O3 | TMA | O2 | 100 | 5, 10 | – | [34] |
L4 | P | Al2O3 | TMA | H2O | – | 4 | ≈2.5 | [66] |
TMA | H2O | 150 | 4 | – | [64] | |||
E | TiO2 | TiCl4 | H2O | 100 | 10 | ≈1.5 | [122] | |
TiO2-ZnO | 6× TiCl4 | H2O | 100 | (1.7 nm) | – | [125] | ||
4× DEZ | H2O | 150 | ||||||
TiO2-ZnO | 4× DEZ | H2O | 150 | |||||
6× TiCl4 | H2O | 100 | ||||||
TiO2-ZnO | 3× TiCl4 | H2O | 100 | |||||
4× DEZ | H2O | 150 | ||||||
3× TiCl4 | H2O | 100 | ||||||
ZnO | DEZ | H2O | 150 | 5 | ≈3 | [122] | ||
L5 | P | Al2O3 | TMA | – | 200 | 50 | – | [79] |
L6 | P | FeOx | FeCp2 | O2 | 450 | 20, 40, 100, 150 | – | [109] |
L7 | P | Al2O3 | TMA | H2O | 200 | 16, 24, 40 | – | [82] |
L8 | P | Al2O3 | TMA | H2O | – | – | – | [78] |
L9 | P | – | – | – | – | – | – | [83] |
L10 | – | LiTaO3 | 1× LiOtBu | H2O | 235 | 2, 5, 10 (≈3 nm), 20 | – | [116] |
6× Ta(OEt)5 | H2O | |||||||
– | P | Al2O3 | TMA | H2O | 150 | 10, 20, 40 | – | [77] |
Material | P/E | Current, C | Cp | Reference |
---|---|---|---|---|
LiCoO2 | P | 0.1 | 4ZnO > 4Al2O3 | [39] |
LiCoO2 | E | ≈0.6 ÷ ≈4 | 2ZrO2 ≈ 2TiO2 > 2Al2O3 | [45] |
LiCoO2 | E | 1 ÷ 2 | 15 nmNbOx > 30 nmNbOx > 60 nmNbOx | [119] |
E | 5 ÷ 100 | 15 nmNbOx ≈ 30 nmNbOx > 60 nmNbOx | ||
LiCoO2 | – | 0.25 | LiMeO > LiMeP > MeF~MeP | [139] |
LiMn2O4 | P | 0.2 ÷ 1 (25 °C) | 50CeO2 < 5ZrO2 < 5Al2O3 | [49] |
P | 2 (25 °C) | 50CeO2 > 5Al2O3 > 5ZrO2 | ||
P | 0.2 ÷ 2 (55 °C) | 50CeO2 > 5ZrO2 > 5Al2O3 | ||
LiMn2O4 | E(P) | 1 ÷ 200 | 5 nmTiO2 > 1 nmAl2O3 | [47] |
LiMn2O4 | E | 0.2 ÷ 0.5 (25 °C) | 10TiO2 ≈15TiO2 > 40TiO2 | [123] |
E | 0.2 (55 °C) | 10TiO2 ≈ 15TiO2 > 40TiO2 | ||
E | 0.5 (55 °C) | 15TiO2 > 10TiO2 > 40TiO2 | ||
(523) | P | 0.1 ÷ 10 | MgO ≈ ZrO2 > Al2O3 | [44] |
(523) | P | 1/3 | 2Al2O3 > 8Al2O3 | [80] |
(523) | E | 0.2 ÷ 5 | 5Ta2O5 > 2Ta2O5 > 10Ta2O5 | [120] |
(523) | E | 0.1 | 100TiO2 (synthesis at 180 °C) ≈ 100TiO2 (synthesis at 120 °C) > 100TiO2(synthesis at 150 °C) | [124] |
0.2 ÷ 1 | 100TiO2 (synthesis at 180 °C) ≈ 100TiO2 (synthesis at 150 °C) ≈ 100TiO2 (synthesis at 120 °C) | |||
2 | 100TiO2 (synthesis at 180 °C) > 100TiO2 (synthesis at 150 °C) > 100TiO2 (synthesis at 120 °C) | |||
(622) | P | 1 ÷ 3 | 4Al2O3 ≈ 10Al2O3 | [85] |
(622) | E | 0.1 ÷ 0.5; 3 | 20ZrO2 ≈ 5ZrO2 ≈ 40ZrO2 | [135] |
E | 1 ÷ 2 | 20ZrO2 > 5ZrO2 > 40ZrO2 | ||
(622) | P | 0.1 ÷ 2 | 20Al2O3 > 10Al2O3 ≈ 40Al2O3 | [74] |
(622) | E | 0.1 ÷ 5 | 10LixTiyOz > 50TiOx | [117] |
(622) | P | 0.1 ÷ 0.2 (25 °C) | 2ZrO2 ≈ 5ZrO2 ≈ 8ZrO2 | [136] |
0.5 ÷ 5 (25 °C) | 2ZrO2 > 5ZrO2 > 8ZrO2 | |||
(622) | P | 0.1 ÷ 0.5 | 1AlPON ≈ 2AlPO4 | [102] |
1 ÷ 5 | 1AlPON > 2AlPO4 | |||
(811) | P | 0.1 ÷ 2 (25 °C) | 2Al2O3 ≈ 5Al2O3 > 10Al2O3 | [86] |
P | 0.1 ÷ 5 (50 °C) | 2Al2O3 > 5Al2O3 ≈ 10Al2O3 | ||
FCG (811) | P | 0.1 ÷ 5 | Al2O3 > TiO2 | [7] |
NCA | P | 0.5 ÷ 2 | TiO2 > Al2O3 | |
LiNi0.5Mn1.5O4 | E | 0.1 ÷ 0.33 | 5LiAlO2 > 5Al2O3 | [48] |
LiNi0.5Mn1.5O4 | P | ≈0.1 ÷ 2 | Al2O3 > TiO2 | [33] |
LiNi0.5Mn1.5O4 | P | 0.1 ÷ 5 | 10(TiO2-LiPO4) > LiPO4 ≈ TiO2 | [126] |
LiNi0.5Mn1.5O4 | P | 0.1 | 5Al2O3 > 10Al2O3 > 20Al2O3 | [90] |
L1 | P | 0.1 | 6ZnO ≥ 6ZrO2 > 6Al2O3 | [68] |
P | 0.2 ÷ 5 | 6ZrO2 > 6ZnO > 6Al2O3 | ||
L4 | E | 0.04 ÷ 1 | 4ZnO-6TiO2 > 6TiO2-4ZnO≈ ≈3TiO2-4ZnO-3TiO2 | [125] |
L4 | E | 0.04 ÷ 1 | 10TiO2 > 5ZnO | [122] |
L7 | P | – | 24Al2O3 ≈ 40Al2O3 > 16Al2O3 | [82] |
LiFePO4 | P | 0.1 ÷ 5 (25 °C) | 5TiN > 5 Al2O3 > 10TiN | [89] |
P | 10 (25 °C) | 5TiN > 10TiN >5 Al2O3 | ||
LiFePO4 | P | 1 ÷ 5 (25 °C) | 10TiN > 15TiN ≈ 2Al2O3 ≈ 5TiN > 5Al2O3 > >10Al2O3 | [84] |
P | 10 ÷ 15 (25 °C) | 10TiN > 15TiN > 5TiN ≈ 5Al2O3 > 2Al2O3> >10Al2O3 | ||
P | 1 ÷ 5 (55 °C) | 10TiN > 15TiN ≈ 2Al2O3 ≈ 5TiN > 5Al2O3> >10Al2O3 | ||
P | 10 ÷ 15 (55 °C) | 10TiN > 15TiN > 5TiN ≈ 5Al2O3 > 2Al2O3> >10Al2O3 |
Material | P/E | Discharge Current, C | Comparison of Capacities at the End of Cycling Tests | Reference |
---|---|---|---|---|
LiCoO2 | P | 0.1 | 4Al2O3 > 4ZnO | [39] |
LiCoO2 | E | ≈1 | 2Al2O3 > ZrO2 ≈ 2TiO2 | [45] |
LiCoO2 | E | 0.2 | 10Al2O3 > 50TiO2 | [31] |
LiCoO2 | E | 1 | 2AlF3 > 2Al2O3 | [69] |
LiCoO2 | E | 10 | 30 nmNbOx > 60 nmNbOx > 15 nmNbOx | [119] |
LiCoO2 | – | 0.5 (3–4.6 V) | LiMeP > MeF > MeP > LiMeO | [139] |
0.5 (3–4.55 V) | MeF > LiMeP > Me > LiMeO | |||
LiMn2O4 | P | 1(25 °C) | 6ZnO > 6ZrO2 > 6Al2O3 | [67] |
E | 1(25 °C) | 6ZnO > 6ZrO2 > 6Al2O3 | ||
P | 1(55 °C) | 6ZnO > 6ZrO2 > 6Al2O3 | ||
E | 1(55 °C) | 6ZrO2 > 6ZnO > 6Al2O3 | ||
LiMn2O4 | P | 1(25 °C) | 50CeO2 > 5Al2O3 ≥ 5ZrO2 | [49] |
P | 1(55 °C) | 50CeO2 > 5ZrO2 > 5Al2O3 | ||
P | 2(25 °C) | 50CeO2 > 5Al2O3 > 5ZrO2 | ||
LiMn2O4 | P | – | 5Al2O3 > 10Al2O3 | [73] |
LiMn2O4 | E | 0.5(25 °C) | 10TiO2 ≈ 15TiO2 > 40TiO2 | [123] |
E | 0.5(55 °C) | 15TiO2 > 10TiO2 > 40TiO2 | ||
LiMn2O4 | P | (25 °C) | 100CeO2 > 5Al2O3 | [95] |
LiMn2O4 | P | (55 °C) | 5Al2O3 > 100CeO2 | [95] |
(523) | P | 1 | Al2O3 > MgO ≈ ZrO2 | [44] |
(523) | P | – | 2Al2O3 > 8 Al2O3 | [80] |
(523) | E | 1 | 5Ta2O5 > 2Ta2O5 > 10Ta2O5 | [120] |
(523) | E | 1(55 °C) | 100TiO2 (synthesis at 180 °C) > 100TiO2 (synthesis at 150 °C) > 100TiO2 (synthesis at 120 °C) | [124] |
(622) | P | 1 | 4Al2O3 ≈ 10Al2O3 | [85] |
(622) | E | 0.5 | 20ZrO2 > 5ZrO2 > 40ZrO2 | [135] |
(622) | P | 0.5 | 20Al2O3 > 10Al2O3 > 40Al2O3 | [74] |
(622) | E | 1 | 10LixTiyOz > 50TiOx | [117] |
(622) | P | 1 (25 °C); 1 (50 °C) | TiPO4 > TiPON | [127] |
(622) | P | 1 (25 °C) | 5ZrO2 > 2ZrO2 > 8ZrO2 | [136] |
(622) | P | 1 | 1AlPON > 2AlPO4 | [102] |
(811) | P | 1 (25 °C) | 2Al2O3 ≈ 5Al2O3 > 10Al2O3 | [86] |
P | 5 (50 °C) | 2Al2O3 > 5Al2O3 ≈ 10Al2O3 | ||
(811) | P | 0.1 | 20Al2O3 > 10Al2O3 > 50Al2O3 | [88] |
FCG (811) | P | 0.3; 1 | Al2O3 > TiO2 | [7] |
NCA | P | 0.3; 1 | TiO2 > Al2O3 | |
LiNi0.5Mn1.5O4 | E | 0.1; 0.33 | 5LiAlO2 > 5Al2O3 | [48] |
LiNi0.5Mn1.5O4 | P | 0.5 | 10(TiO2-LiPO4)> LiPO4 ≈ TiO2 | [126] |
LiNi0.5Mn1.5O4 | P | 0.5 (25 °C) | 5Al2O3 > 10Al2O3 > 20Al2O3 | [90] |
P | 0.5 (50 °C) | 20Al2O3 > 5Al2O3 | ||
LiNi0.5Mn1.5O4 | P | 0.1 | 2AlF3 (synthesis at 240 °C) > 2AlF3 (synthesis at 150 °C) > 4AlF3 (synthesis at 150 °C) | [100] |
LiNi0.5Mn1.5O4 | E | 1 | 50Li3PO4 > 83Li3PO4 > 17Li3PO4 | [114] |
L1 | P | 1 | 6ZrO2 > 6ZnO > 6Al2O3 | [68] |
L2 | E | <0.1 | 6LiAlOx > 6ZrO2 > 6TiO2 > 5Al2O3 | [30] |
L4 | E | 1 | 4ZnO-6TiO2 > 3TiO2-4ZnO-3TiO2 > 6TiO2-4ZnO | [125] |
L4 | E | 0.5 | 10TiO2 > 5ZnO | [122] |
L7 | P | – | 24Al2O3 > 40Al2O3 ≈ 16Al2O3 | [82] |
L10 | – | 1 (25 °C) | 10LiTaO3 > 5LiTaO3 > 2LiTaO3 ≈ 20LiTaO3 | [116] |
NMC | E | 1 (25 °C) | 1AlF3-5Al2O3 > 2AlF3-4Al2O3> >6Al2O3 ≈ 6AlF3 ≈ 4AlF3-2Al2O3 ≈ 5AlF3-1Al2O3 | [87] |
LiFePO4 | P | 2 (25 °C) | 5TiN > 5Al2O3 > 10TiN | [89] |
P | 5 (25 °C) | 5TiN > 10TiN >5Al2O3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshtyal, Y.; Olkhovskii, D.; Rumyantsev, A.; Maximov, M. Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review. Batteries 2022, 8, 184. https://doi.org/10.3390/batteries8100184
Koshtyal Y, Olkhovskii D, Rumyantsev A, Maximov M. Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review. Batteries. 2022; 8(10):184. https://doi.org/10.3390/batteries8100184
Chicago/Turabian StyleKoshtyal, Yury, Denis Olkhovskii, Aleksander Rumyantsev, and Maxim Maximov. 2022. "Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review" Batteries 8, no. 10: 184. https://doi.org/10.3390/batteries8100184
APA StyleKoshtyal, Y., Olkhovskii, D., Rumyantsev, A., & Maximov, M. (2022). Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review. Batteries, 8(10), 184. https://doi.org/10.3390/batteries8100184