Recent Development of Electrolyte Engineering for Sodium Metal Batteries
Abstract
:1. Introduction
2. Liquid Electrolytes for Na Metal Anodes
3. Polymer Electrolytes for Na Metal Anodes
4. All-Solid-State Electrolytes for Na Metal Anodes
5. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, J.; Zhao, D.; Zhang, C. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renew. Energy 2020, 162, 1629–1648. [Google Scholar] [CrossRef]
- Wang, Z.; Zhuo, W.; Li, J.; Ma, L.; Tan, S.; Zhang, G.; Yin, H.; Qin, W.; Wang, H.; Pan, L. Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 2022, 98, 107243. [Google Scholar] [CrossRef]
- Dai, L.; Huang, K.; Xia, Y.; Xu, Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 2021, 6, 193–211. [Google Scholar] [CrossRef]
- Li, J.L.; Zhuang, N.; Xie, J.P.; Li, X.D.; Zhuo, W.C.; Wang, H.; Na, J.B.; Li, X.B.; Yamauchi, Y.; Mai, W.J. K-Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether-Based Electrolyte. Adv. Energy Mater. 2020, 10, 1903455. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-ion battery technology for grid application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Karakashov, B.; Celzard, A.; Fierro, V.; El Hage, R.; Brosse, N.; Dufour, A.; Etienne, M. Carbon Monoliths with Hierarchical Porous Structure for All-Vanadium Redox Flow Batteries. Batteries 2021, 7, 55. [Google Scholar] [CrossRef]
- Zhou, J.; Zhuang, H.L.; Wang, H. Layered tetragonal zinc chalcogenides for energy-related applications: From photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale 2017, 9, 17303–17311. [Google Scholar] [CrossRef]
- Gao, L.; Chen, S.; Zhang, G.; Dai, Z.; Yan, D.; Yang, H.Y.; Yu, C.; Bai, Y. Improved thermal and structural stabilities of LiNi0.6Co0.2Mn0.2O2 cathode by La2Zr2O7 multifunctional modification. Appl. Phys. Lett. 2021, 119, 093902. [Google Scholar] [CrossRef]
- Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328. [Google Scholar] [CrossRef]
- Xie, J.P.; Li, X.D.; Lai, H.J.; Zhao, Z.J.; Li, J.L.; Zhang, W.G.; Xie, W.G.; Liu, Y.M.; Mai, W.J. A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic-Sulfide-Containing Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 14740–14747. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Li, J.; Li, X.; Lei, H.; Zhuo, W.; Li, X.; Hong, G.; Hui, K.N.; Pan, L.; Mai, W. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021, 3, 791–799. [Google Scholar] [CrossRef]
- Ma, K.; Liu, Y.; Jiang, H.; Hu, Y.; Si, R.; Liu, H.; Li, C. Multivalence-ion intercalation enables ultrahigh 1T phase MoS2 nanoflowers to enhanced sodium-storage performance. CCS Chem. 2021, 3, 1472–1482. [Google Scholar] [CrossRef]
- Mohsin, I.U.; Ziebert, C.; Rohde, M.; Seifert, H.J. Thermophysical characterization of a layered P2 type structure Na0.53MnO2 cathode material for sodium ion batteries. Batteries 2021, 7, 16. [Google Scholar] [CrossRef]
- Li, X.D.; Liu, Z.B.; Li, J.L.; Lei, H.; Zhuo, W.C.; Qin, W.; Cai, X.; Hui, K.N.; Pan, L.K.; Mai, W.J. Insights on the mechanism of Na-ion storage in expanded graphite anode. J. Energy Chem. 2021, 53, 56–62. [Google Scholar] [CrossRef]
- Dong, S.; Lv, N.; Wu, Y.; Zhang, Y.; Zhu, G.; Dong, X. Titanates for sodium-ion storage. Nano Today 2022, 42, 101349. [Google Scholar] [CrossRef]
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974. [Google Scholar] [CrossRef]
- Lyu, T.; Lan, X.; Liang, L.; Lin, X.; Hao, C.; Pan, Z.; Tian, Z.Q.; Shen, P.K. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage. Electrochim. Acta 2021, 365, 137356. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, R.; Mu, D.; Tan, G.; Gao, H.; Li, N.; Chen, R.; Wu, F. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy 2022, 4, 458–479. [Google Scholar] [CrossRef]
- Maça, R.R.; Etacheri, V. Effect of vinylene carbonate electrolyte additive on the surface chemistry and pseudocapacitive sodium-ion storage of TiO2 nanosheet anodes. Batteries 2020, 7, 1. [Google Scholar] [CrossRef]
- Chu, C.; Li, R.; Cai, F.; Bai, Z.; Wang, Y.; Xu, X.; Wang, N.; Yang, J.; Dou, S. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340. [Google Scholar] [CrossRef]
- Yuan, X.R.; Chen, S.M.; Li, J.L.; Xie, J.P.; Yan, G.H.; Liu, B.T.; Li, X.B.; Li, R.; Pan, L.K.; Mai, W.J. Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy 2021, 3, 615–626. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, J.L.; Ma, L.; Li, H.B.; Xu, X.T.; Liu, X.J.; Lu, T.; Pan, L.K. Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chem. Eng. J. 2022, 427, 130936. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Shi, X.-L.; Suo, G.; Xue, F.; Liu, J.; Lu, S.; Chen, Z.-G. N-doped silk wadding-derived carbon/SnOx@ reduced graphene oxide film as an ultra-stable anode for sodium-ion half/full battery. Chem. Eng. J. 2022, 433, 133675. [Google Scholar] [CrossRef]
- Park, J.; Sharma, J.; Jafta, C.J.; He, L.; Meyer III, H.M.; Li, J.; Keum, J.K.; Nguyen, N.A.; Polizos, G. Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries. Batteries 2022, 8, 12. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, Y.; Wu, J.; Cheng, H.; Yuan, L.; Li, Z.; Xu, H.; Huang, Y. Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 2021, 3, 100058. [Google Scholar] [CrossRef]
- Fang, H.Y.; Gao, S.N.; Zhu, Z.; Ren, M.; Wu, Q.; Li, H.X.; Li, F.J. Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. Chem. Res. Chin. Univ. 2021, 37, 189–199. [Google Scholar] [CrossRef]
- Li, Z.P.; Zhu, K.J.; Liu, P.; Jiao, L.F. 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2022, 12, 2100359. [Google Scholar] [CrossRef]
- Bao, C.Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D.L.; Liu, H.K.; Dou, S.X. Solid Electrolyte Interphases on Sodium Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004891. [Google Scholar] [CrossRef]
- Chen, Q.W.; He, H.; Hou, Z.; Zhuang, W.M.; Zhang, T.X.; Sun, Z.Z.; Huang, L.M. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. J. Mater. Chem. A 2020, 8, 16232–16237. [Google Scholar] [CrossRef]
- Zhao, Y.; Goncharova, L.V.; Lushington, A.; Sun, Q.; Yadegari, H.; Wang, B.Q.; Xiao, W.; Li, R.Y.; Sun, X.L. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Adv. Mater. 2017, 29, 1606663. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Kim, S.; Jo, C.; Lee, J. A review on recent approaches for designing the SEI layer on sodium metal anodes. Mater. Adv. 2020, 1, 3143–3166. [Google Scholar] [CrossRef]
- Wang, H.; Liang, J.L.; Wu, Y.; Kang, T.X.; Shen, D.; Tong, Z.Q.; Yang, R.; Jiang, Y.; Wu, D.; Li, X.J.; et al. Porous BN Nanofibers Enable Long-Cycling Life Sodium Metal Batteries. Small 2020, 16, 2002671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, Y.Y.; Miao, L.C.; Zhao, Q.; Xia, K.X.; Liang, J.; Chou, S.L.; Chen, J. An Alternative to Lithium Metal Anodes: Non-dendritic and Highly Reversible Sodium Metal Anodes for Li-Na Hybrid Batteries. Angew. Chem. Int. Ed. 2018, 57, 14796–14800. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Liu, S.; Jiang, Y.; Shen, D.; Kang, T.; Tong, Z.; Wu, D.; Li, X.; Lee, C.S. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 2021, 5, 2001050. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, M.; Wang, G.; Yu, F.; Wen, L.; Liu, H.-K.; Dou, S.-X.; Wu, C. An in-situ generated Bi-based sodiophilic substrate with high structural stability for high-performance sodium metal batteries. J. Energy Chem. 2022, 71, 595–603. [Google Scholar] [CrossRef]
- Liang, J.; Wu, W.; Xu, L.; Wu, X. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon 2021, 176, 219–227. [Google Scholar] [CrossRef]
- Mo, L.; Chen, A.-L.; Ouyang, Y.; Zong, W.; Miao, Y.-E.; Liu, T. Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. ACS Appl. Mater. Interfaces 2021, 13, 48634–48642. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.; Dong, L.; Shao, G.; Wang, G.; Peng, X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021, 80, 105563. [Google Scholar] [CrossRef]
- Ye, S.; Wang, L.; Liu, F.; Shi, P.; Yu, Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021, 1, 75–82. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.; Nai, J.; Wang, Y.; Liu, Y.; Liu, C.; Tao, X. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chem. Eng. J. 2021, 409, 127943. [Google Scholar] [CrossRef]
- Ma, B.; Bai, P. Fast Charging Limits of Ideally Stable Metal Anodes in Liquid Electrolytes. Adv. Energy Mater. 2022, 12, 2102967. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, M.; Zuo, Z.; Zhao, X.; Dou, H.; Zhang, Y.; Li, S.; Wu, Z.; Shi, Y.; Ma, Z. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery. Engineering 2022, 11, 87–94. [Google Scholar] [CrossRef]
- Zheng, X.; Gu, Z.; Fu, J.; Wang, H.; Ye, X.; Huang, L.; Liu, X.; Wu, X.; Luo, W.; Huang, Y. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Lu, K.; Cai, W.; Jie, Y.; Huang, F.; Li, X.; Cao, R.; Jiao, S. Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries. Energy Fuels 2021, 35, 4587–4595. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, L.; Wang, H.; Huang, S.; Xu, T.; Kong, D.; Zhang, Z.; Zang, J.; Li, X.; Wang, Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J. Colloid Interface Sci. 2022, 611, 317–326. [Google Scholar] [CrossRef]
- Wang, R.; Han, H.-H.; Liu, F.-Q.; Jia, S.-X.; Xiang, T.-Q.; Huo, H.; Zhou, J.-J.; Li, L. Sulfonated poly (vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochim. Acta 2022, 406, 139840. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, X.; Li, M.; Li, X.; Lu, X.; Wu, D.; Han, B.; Zhang, Q.; Zhu, Y.; Gu, M. Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. Nano Lett. 2022, 22, 4347–4353. [Google Scholar] [CrossRef]
- Hu, X.F.; Matios, E.; Zhang, Y.W.; Wang, C.L.; Luo, J.M.; Li, W.Y. Deeply Cycled Sodium Metal Anodes at Low Temperature and in Lean Electrolyte Conditions. Angew. Chem. Int. Ed. 2021, 60, 5978–5983. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, R.; Liu, Y.; Zheng, H.; Fang, W.; Liang, X.; Sun, Y.; Zhou, R.; Xiang, H. Enhanced Sodium Metal/Electrolyte Interface by a Localized High-Concentration Electrolyte for Sodium Metal Batteries: First-Principles Calculations and Experimental Studies. ACS Appl. Energy Mater. 2021, 4, 7376–7384. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, R.; Zheng, H.; Zheng, Y.; Sun, Y.; Liang, X.; Xiang, H.F.; Feng, Y.Z.; Yu, Y. Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Met. 2021, 40, 433–439. [Google Scholar] [CrossRef]
- Matios, E.; Wang, H.; Luo, J.; Zhang, Y.; Wang, C.; Lu, X.; Hu, X.; Xu, Y.; Li, W. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A 2021, 9, 18632–18643. [Google Scholar] [CrossRef]
- Oh, J.A.S.; Wang, Y.M.; Zeng, Q.B.; Sun, J.G.; Sun, Q.M.; Goh, M.; Chua, B.; Zeng, K.Y.; Lu, L. Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium-metal battery. J. Colloid Interf. Sci. 2021, 601, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Li, X.; Yan, M.-Y.; Ni, H.-B.; Huang, H.-H.; Lin, X.-D.; Liu, X.-Y.; Fan, J.-M.; Zheng, M.-S.; Yuan, R.-M. A highly reversible sodium metal anode by mitigating electrodeposition overpotential. J. Mater. Chem. A 2021, 9, 22892–22900. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, L.; Ye, X.; Zhang, J.; Min, F.; Luo, W.; Huang, Y. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem-US 2021, 7, 2312–2346. [Google Scholar] [CrossRef]
- Fan, L.; Li, X. Recent advances in effective protection of sodium metal anode. Nano Energy 2018, 53, 630–642. [Google Scholar] [CrossRef]
- Matios, E.; Wang, H.; Wang, C.; Li, W. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 9758–9780. [Google Scholar] [CrossRef]
- Oh, J.A.S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Mitlin, D. Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes. Adv. Energy Mater. 2020, 10, 2002297. [Google Scholar] [CrossRef]
- Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C.; Janek, J.; Schroder, D.; Wang, G. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. Adv. Mater. 2020, 32, e1903891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seh, Z.W.; Sun, J.; Sun, Y.; Cui, Y. A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Cent. Sci. 2015, 1, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, Y.; Yu, F.; Huang, Z.; Zhang, Y.; Li, L.; Wang, G.; Wen, L.; Liu, H.K.; Dou, S.X.; et al. Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Lett. 2021, 21, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, Z.; Kong, X.; Kim, S.C.; Boyle, D.T.; Qin, J.; Bao, Z.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616. [Google Scholar] [CrossRef]
- Yoon, H.; Zhu, H.J.; Hervault, A.; Armand, M.; MacFarlane, D.R.; Forsyth, M. Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys. Chem. Chem. Phys. 2014, 16, 12350–12355. [Google Scholar] [CrossRef]
- Shi, Q.W.; Zhong, Y.R.; Wu, M.; Wang, H.Z.; Wang, H.L. High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angew. Chem. Int. Ed. 2018, 57, 9069–9072. [Google Scholar] [CrossRef]
- Cao, R.G.; Mishra, K.; Li, X.L.; Qian, J.F.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Iermakova, D.I.; Dugas, R.; Palacin, M.R.; Ponrouch, A. On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes. J. Electrochem. Soc. 2015, 162, A7060–A7066. [Google Scholar] [CrossRef]
- Rodriguez, R.; Loeffler, K.E.; Nathan, S.S.; Sheavly, J.K.; Dolocan, A.; Heller, A.; Mullins, C.B. In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Lett. 2017, 2, 2051–2057. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A.; Kang, S.; Wi, T.; Kang, S.J.; Lee, H.W.; Choi, N.S. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280. [Google Scholar] [CrossRef]
- Chen, X.; Shen, X.; Hou, T.Z.; Zhang, R.; Peng, H.J.; Zhang, Q. Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. Chem-US 2020, 6, 2242–2256. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, H.; Zheng, Y.; Zheng, H.; Liang, X.; Sun, Y.; Chen, C.H.; Xiang, H.F. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J. Power Sources 2020, 455, 227956. [Google Scholar] [CrossRef]
- Jiang, R.; Hong, L.; Liu, Y.C.; Wang, Y.D.; Patel, S.; Feng, X.Y.; Xiang, H.F. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Fu, H.Y.; Hu, C.C.; Xu, H.; Huang, Y.; Wen, J.Y.; Sun, H.B.; Luo, W.; Huang, Y.H. Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface. J. Phys. Chem. Lett. 2019, 10, 707–714. [Google Scholar] [CrossRef]
- Kreissl, J.J.A.; Langsdorf, D.; Tkachenko, B.A.; Schreiner, P.R.; Janek, J.; Schroder, D. Incorporating Diamondoids as Electrolyte Additive in the Sodium Metal Anode to Mitigate Dendrite Growth. ChemSusChem 2020, 13, 2661–2670. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Matios, E.; Li, W. Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate. Angew. Chem. Int. Ed. Engl. 2018, 57, 7734–7737. [Google Scholar] [CrossRef]
- Yi, Q.; Lu, Y.; Sun, X.R.; Zhang, H.; Yu, H.L.; Sun, C.W. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability. ACS Appl. Mater. Interfaces 2019, 11, 46965–46972. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Gu, Z.Y.; Liu, X.Y.; Wang, Z.Q.; Wen, J.Y.; Wu, X.L.; Luo, W.; Huang, Y.H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zheng, X.Y.; Dai, Y.M.; Wu, W.Y.; Huang, Y.Y.; Fu, H.Y.; Huang, Y.H.; Luo, W. Fluoride-Rich Solid-Electrolyte-Interface Enabling Stable Sodium Metal Batteries in High-Safe Electrolytes. Adv. Funct. Mater. 2021, 31, 2103522. [Google Scholar] [CrossRef]
- Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C.P.; Nakai, H.; Yamada, A. Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component? Angew. Chem. Int. Ed. 2019, 58, 8024–8028. [Google Scholar] [CrossRef]
- Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S.A. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. ChemSusChem 2017, 10, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chen, Y.W.; Jie, Y.L.; Lang, S.Y.; Song, J.H.; Lei, Z.W.; Wang, S.; Ren, X.D.; Wang, D.; Li, X.L.; et al. Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods 2020, 4, 1900856. [Google Scholar] [CrossRef]
- Le, P.M.L.; Vo, T.D.; Pan, H.L.; Jin, Y.; He, Y.; Cao, X.; Nguyen, H.V.; Engelhard, M.H.; Wang, C.M.; Xiao, J.; et al. Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Ether-Based Electrolytes. Adv. Funct. Mater. 2020, 30, 2001151. [Google Scholar] [CrossRef]
- Han, M.; Zhu, C.; Ma, T.; Pan, Z.; Tao, Z.; Chen, J. In situ atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chem. Commun. 2018, 54, 2381–2384. [Google Scholar] [CrossRef]
- Wang, S.; Cai, W.; Sun, Z.; Huang, F.; Jie, Y.; Liu, Y.; Chen, Y.; Peng, B.; Cao, R.; Zhang, G. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem. Commun. 2019, 55, 14375–14378. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jiang, Z.; Huang, X.; Lu, X.; Xie, J.; Cheng, S. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021, 89, 106396. [Google Scholar] [CrossRef]
- Li, P.; Huang, X.; Jiang, Z.; Zhang, H.; Yu, P.; Lu, X.; Xie, J. High-rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res. 2022, 15, 7172–7179. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Y.; Matios, E.; Wang, P.; Wang, C.; Xu, Y.; Hu, X.; Wang, H.; Li, B.; Li, W. Stabilizing Sodium Metal Anodes with Surfactant-Based Electrolytes and Unraveling the Atomic Structure of Interfaces by Cryo-TEM. Nano Lett. 2022, 22, 1382–1390. [Google Scholar] [CrossRef]
- Zhu, M.; Li, L.; Zhang, Y.; Wu, K.; Yu, F.; Huang, Z.; Wang, G.; Li, J.; Wen, L.; Liu, H.-K. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.; Lee, J.; Lee, S.-M.; Choi, J.-H.; Kim, H.; Kwon, M.-S.; Kang, K.; Lee, K.T.; Choi, N.-S. Ultraconcentrated sodium bis (fluorosulfonyl) imide-based electrolytes for high-performance sodium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 3723–3732. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M.H.; Zhang, J.-G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321. [Google Scholar] [CrossRef]
- Niu, Y.-B.; Yin, Y.-X.; Wang, W.-P.; Wang, P.-F.; Ling, W.; Xiao, Y.; Guo, Y.-G. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020, 2, 589–597. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Wu, J.; Zhou, M.; Liu, W.; Zhou, H. Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy 2021, 80, 105516. [Google Scholar] [CrossRef]
- Lin, X.; Yu, J.; Effat, M.B.; Zhou, G.; Robson, M.J.; Kwok, S.C.; Li, H.; Zhan, S.; Shang, Y.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 2021, 31, 2010261. [Google Scholar] [CrossRef]
- Ford, H.O.; Cui, C.; Schaefer, J.L. Comparison of single-ion conducting polymer gel electrolytes for sodium, potassium, and calcium batteries: Influence of polymer chemistry, cation identity, charge density, and solvent on conductivity. Batteries 2020, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.W.; Pan, Q.W.; Clites, M.; Byles, B.W.; Pomerantseva, E.; Li, C.Y. High-Capacity All-Solid-State Sodium Metal Battery with Hybrid Polymer Electrolytes. Adv. Energy Mater. 2018, 8, 1801885. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.R.; Chai, J.C.; Liu, T.M.; Hu, R.X.; Zhang, Z.H.; Li, G.C.; Cui, G.L. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. Solid State Ion. 2019, 337, 140–146. [Google Scholar] [CrossRef]
- Sangeland, C.; Mogensen, R.; Brandell, D.; Mindemark, J. Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes. ACS Appl. Polym. Mater. 2019, 1, 825–832. [Google Scholar] [CrossRef]
- Wen, P.; Lu, P.; Shi, X.; Yao, Y.; Shi, H.; Liu, H.; Yu, Y.; Wu, Z.S. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal–organic framework-supported poly (ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 37262–37272. [Google Scholar] [CrossRef]
- Yang, J.F.; Zhang, M.; Chen, Z.; Du, X.F.; Huang, S.Q.; Tang, B.; Dong, T.T.; Wu, H.; Yu, Z.; Zhang, J.J.; et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 2019, 12, 2230–2237. [Google Scholar] [CrossRef]
- Luo, C.; Shen, T.; Ji, H.; Huang, D.; Liu, J.; Ke, B.; Wu, Y.; Chen, Y.; Yan, C. Mechanically robust gel polymer electrolyte for an ultrastable sodium metal battery. Small 2020, 16, 1906208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ni, Y.; Liu, J.; Lu, Y.; Zhang, K.; Niu, Z.; Chen, J. Room-Temperature Flexible Quasi-Solid-State Rechargeable Na-O2 Batteries. ACS Cent. Sci. 2020, 6, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Grundish, N.S.; Goodenough, J.B.; Manthiram, A. Ionic Liquid (IL) Laden Metal-Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, Y.; Liang, X.; Lei, Y.; Yuan, T.; Lu, H.; Liu, Z.; Cao, Y.; Feng, J. Novel Sodium–poly (tartaric acid) borate-based single-ion conducting polymer electrolyte for sodium–metal batteries. ACS Appl. Energy Mater. 2020, 3, 10053–10060. [Google Scholar] [CrossRef]
- Mendes, T.C.; Zhang, X.; Wu, Y.; Howlett, P.C.; Forsyth, M.; Macfarlane, D.R. Supported ionic liquid gel membrane electrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng. 2019, 7, 3722–3726. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Q.; Shen, Y.; Liu, W. Fast-Charging Solid-State Lithium Metal Batteries: A Review. Adv. Energy Sustain. Res. 2022, 3, 2100203. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Hwang, S.; Li, X.; Zhao, Y.; Adair, K.; Zhao, C.; Li, X.; Deng, S.; Lin, X.; et al. Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy 2020, 72, 104686. [Google Scholar] [CrossRef]
- Wenzel, S.; Leichtweiss, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium beta-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2016, 8, 28216–28224. [Google Scholar] [CrossRef]
- Wu, T.; Wen, Z.Y.; Sun, C.Z.; Wu, X.W.; Zhang, S.P.; Yang, J.H. Disordered carbon tubes based on cotton cloth for modulating interface impedance in beta”-Al2O3-based solid- state sodium metal batteries. J. Mater. Chem. A 2018, 6, 12623–12629. [Google Scholar] [CrossRef]
- Deng, T.; Ji, X.; Zou, L.; Chiekezi, O.; Cao, L.; Fan, X.; Adebisi, T.R.; Chang, H.-J.; Wang, H.; Li, B.; et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat. Nanotechnol. 2022, 17, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Hao, F.; Zhang, J.; Wu, X.; Zhang, Y.; Gheytani, S.; Wen, Z.; Yao, Y. A high-energy quinone-based all-solid-state sodium metal battery. Nano Energy 2019, 62, 718–724. [Google Scholar] [CrossRef]
- Lei, D.; He, Y.-B.; Huang, H.; Yuan, Y.; Zhong, G.; Zhao, Q.; Hao, X.; Zhang, D.; Lai, C.; Zhang, S. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244. [Google Scholar] [CrossRef] [Green Version]
- Matios, E.; Wang, H.; Wang, C.L.; Hu, X.F.; Lu, X.; Luo, J.M.; Li, W.Y. Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability. ACS Appl. Mater. Interfaces 2019, 11, 5064–5072. [Google Scholar] [CrossRef]
- Ling, W.; Fu, N.; Yue, J.P.; Zeng, X.X.; Ma, Q.; Deng, Q.; Xiao, Y.; Wan, L.J.; Guo, Y.G.; Wu, X.W. A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903966. [Google Scholar] [CrossRef]
- Yu, W.H.; Zhai, Y.F.; Yang, G.M.; Yao, J.Y.; Song, S.F.; Li, S.; Tang, W.P.; Hu, N.; Lu, L. A composite electrolyte with Na3Zr2Si2PO12 microtube for solid-state sodium-metal batteries. Ceram. Int. 2021, 47, 11156–11168. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wang, C.Z.; Dai, Y.J.; Jin, H.B. Homogeneous Nat transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries. Nano Energy 2021, 88, 106293. [Google Scholar] [CrossRef]
- Yang, J.Y.; Xu, H.H.; Wu, J.Y.; Gao, Z.H.; Hu, F.; Wei, Y.; Li, Y.Y.; Liu, D.Z.; Li, Z.; Huang, Y.H. Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High-Performance Solid-State Sodium Metal Batteries. Small Methods 2021, 5, 2100339. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, J.J.; Mao, Z.Y.; Wang, D.J. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery. J. Mater. Chem. A 2021, 9, 16039–16045. [Google Scholar] [CrossRef]
- Wang, C.Z.; Jin, H.B.; Zhao, Y.J. Surface Potential Regulation Realizing Stable Sodium/Na3Zr2Si2PO12 Interface for Room-Temperature Sodium Metal Batteries. Small 2021, 17, 2100974. [Google Scholar] [CrossRef]
- Ruiz-Martinez, D.; Kovacs, A.; Gomez, R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 2017, 10, 1936–1941. [Google Scholar] [CrossRef]
- Lin, X.T.; Sun, F.; Sun, Q.; Wang, S.Z.; Luo, J.; Zhao, C.T.; Yang, X.F.; Zhao, Y.; Wang, C.H.; Li, R.Y.; et al. O2/O2− Crossover- and Dendrite-Free Hybrid Solid-State Na-O2 Batteries. Chem. Mater. 2019, 31, 9024–9031. [Google Scholar] [CrossRef]
- Wu, S.; Qiao, Y.; Jiang, K.; He, Y.; Guo, S.; Zhou, H. Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Adv. Funct. Mater. 2018, 28, 1706374. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, L.; Tang, Y.F.; Sun, J.; Meng, W.D.; Luo, T.T.; Wang, L.; Liu, S. Designing a Novel Electrolyte Na3.2Hf2Si2.2P0.8O11.85F0.3 for All-Solid-State Na-O2 Batteries. Small Methods 2022, 6, 202200345. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Qiu, X.; Zhang, Q.; Kang, Y.; Koo, A.; Hayashi, K.; Chen, K.; Xue, D.; Hui, K.N.; Yadegari, H.; et al. A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy 2018, 49, 574–579. [Google Scholar] [CrossRef]
- Wang, C.; Deng, T.; Fan, X.; Zheng, M.; Yu, R.; Lu, Q.; Duan, H.; Huang, H.; Wang, C.; Sun, X. Identifying soft breakdown in all-solid-state lithium battery. Joule 2022, 6, 1770–1781. [Google Scholar] [CrossRef]
- Song, S.; Kotobuki, M.; Zheng, F.; Xu, C.; Savilov, S.V.; Hu, N.; Lu, L.; Wang, Y.; Li, W.D.Z. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J. Mater. Chem. A 2017, 5, 6424–6431. [Google Scholar] [CrossRef]
- Yang, J.; Gao, Z.; Ferber, T.; Zhang, H.; Guhl, C.; Yang, L.; Li, Y.; Deng, Z.; Liu, P.; Cheng, C. Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. J. Mater. Chem. A 2020, 8, 7828–7835. [Google Scholar] [CrossRef]
- Lu, Y.; Alonso, J.A.; Yi, Q.; Lu, L.; Wang, Z.L.; Sun, C. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv. Energy Mater. 2019, 9, 1901205. [Google Scholar] [CrossRef]
- Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178. [Google Scholar] [CrossRef]
- Chen, S.; Niu, C.; Lee, H.; Li, Q.; Yu, L.; Xu, W.; Zhang, J.-G.; Dufek, E.J.; Whittingham, M.S.; Meng, S.; et al. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule 2019, 3, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, Y.; Boyle, D.T.; Jeong, Y.K.; Xu, R.; de Vasconcelos, L.S.; Huang, Z.; Wang, H.; Wang, H.; Huang, W.; et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798. [Google Scholar] [CrossRef]
- Niu, C.; Liu, D.; Lochala, J.A.; Anderson, C.S.; Cao, X.; Gross, M.E.; Xu, W.; Zhang, J.-G.; Whittingham, M.S.; Xiao, J.; et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 2021, 6, 723–732. [Google Scholar] [CrossRef]
Liquid Electrolytes | Symmetrical Cell (Cycle Performance (h)@Current Density (mA cm−2)) | CE ([CE@Cycle Number@Current Density (mA cm−2)) | Full Cell (Cathode@Capacity (mAh g−1)@Current Density (C)) | References |
---|---|---|---|---|
1 M NaPF6 in diglyme | / | 99.9%@300@0.5 | S@776@0.1 | [62] |
NaFSI/DME (1:2 v/v) | 200@0.2 | 97.7%@250@0.2 | 91% 100 cycles | [81] |
0.5 M NaBF4/G2 | 3000@0.5 | 99.93%@400@0.5 | Na3V2(PO4)3@100@0.1 | [82] |
1 M NaBF4/TEGDME | 1000h@0.2 | 99.9%@1000@0.5 | P2-Na2/3Co1/3Mn2/3O2@163@0.1 | [83] |
1 M NaPF6/TEGDME | 1000@0.2 | 99.9%@850@0.5 | P2-Na2/3Co1/3Mn2/3O2@172@0.1 | [83] |
1 M NaFSI/FEC | 100@5.56 | 94%@100@0.28 | / | [70] |
0.1 M NaBPh4/DME | 500@0.5 | 99.85%@300@0.5 | / | [80] |
1 M NaClO4/EC/PC + 5 wt% FEC | 100@1 | 88%@50@1 | / | [84] |
1 M NaPF6/DME/FEC/HFPM(2:2:1 v/v) | 800@0.5 | 99%@2000@5 | Na3V2(PO4)3@89.1@0.5 | [77] |
1 M NaPF6 in diglyme + 0.033 M Na2S6 | 400@2 | 99%@500@0.5 | S@621@1 | [76] |
1 M NaTFSI/FEC + 0.75% NaAsF6 | 350@0.5 | 97%@400@0.1 | Na3V2(PO4)3@~102@1 | [85] |
1 M NaClO4/EC/PC + 50 mM SnCl2 | 500@0.5 | / | Na3V2(PO4)3@101@10 | [74] |
2 M NaFSI/DME/FEPE(1:1 molar ratio) + 1% SbF3 | 1200@0.5 | 99%@20@1 | Na3V2(PO4)3@105@10 | [51] |
1 M NaClO4/EC/PC + 1% SbF3 | 1000@0.5 | / | Na3V2(PO4)3@80@40 | [72] |
0.8 M LiPF6/DME + 1 M NaPF6/DME | 150@0.5 | 99.2%@100@0.2 | LiFePO4@62.4@20 | [34] |
1 M NaOTf/DME + 0.01 M KTFSI | 2700@1 | 99.5%@300@0.5 | / | [66] |
1 M NaClO4/EC/PC + 0.5 mM C60(NO2)6 | 500@0.5 | 99.4%@200@5 | Na3V2(PO4)3/C@95.9@5 | [86] |
1 M NaPF6/DME + 0.1 wt% C60(CF3)6 | 1200@2 | 99.6%@780@1 | Na3V2(PO4)3/C@108@10 | [87] |
1 M NaPF6/EC/PC + 2 wt% TMTD | 1600@0.25 | / | Prussian blue@70@10 | [63] |
1 M NaPF6 in diglyme + 5 mM CTAB | 500@3 | / | C/S@640@0.5 | [88] |
1 M NaPF6/FEC/PC/HFE + PFMP | 1100@0.5 | 94.2%@100@0.5 | Na3V2(PO4)2O2F@113@2 | [78] |
0.3 M NaPF6/EC/PC + 2 wt% BSTFA | 350@0.5 | / | Na3V2(PO4)3@105@40 | [73] |
0.8 M NaPF6/TEP/FEC + 5 wt% DTD | 1300@0.5 | 93.4%@250@@0.5 | Prussian blue@78.8@10 | [89] |
4 M NaFSI/DME | / | 99%@300@@0.5 | Na3V2(PO4)3 @~100@0.2 | [67] |
5 M NaFSI/DME | 600@0.0028 | 99.3%@120@0.056 | Na4Fe3(PO4)2(P2O7)@109.4@0.5 | [90] |
2.1 M NaFSI/DME/BTFE(1:2 v/v) | 950@2 | 98.98%@400@1 | Na3V2(PO4)3@92@10 | [91] |
2 M NaFSI/DME/TTE | 1170@0.2 | / | Na3V2(PO4)3 @101.5@40 | [50] |
Polymer Electrolytes | Ionic Conductivity (mS cm−1)@Temperature (°C) | Symmetrical Cell (Cycle Performance (h)@Current Density (mA cm−2)) | Full Cell (Cathode@Capacity (mAh g−1)@Current Density (C)) | References |
---|---|---|---|---|
POSS-4PEG2K | 4.5 × 10−3@30 | 3550@0.5 | NaxV2O5@305@0.05 | [96] |
PSP-GPE | 0.1@RT | 620@1 | Na3V2(PO4)3@89.1@0.2 | [97] |
PTMC-NaFSI | 0.05@25 | / | Prussian blue@90@0.2 | [98] |
ETPTA-NaClO4-QSSE | 1.2@RT | 1000@0.1 | Na3V2(PO4)3@101@1 | [99] |
PEO-Cu-MOF | 3.48@RT | 1000@0.2 | NaCrO2@120.7@0.1 | [100] |
IL-MOF | 0.36@RT | 500@1 | Na3Ni1.5TeO6@83.8@0.1 | [104] |
BC-TEP/VC/NaClO4 | 0.22@RT | / | Na3V2(PO4)3@84.3@0.2 | [101] |
GO-PVDF-HFP | 2.3@RT | 400@5 | Na3V2(PO4)3@107@1 | [102] |
NaPTAB-SGPE | 0.094@RT | 100@0.05 | Na3V2(PO4)3@90.3@0.05 | [105] |
SILGM | 2@23 | / | Na3V2(PO4)3@81.7@0.1 | [106] |
All-Solid-State Electrolytes | Ionic Conductivity (mS cm−1)@Temperature (°C) | Symmetrical Cell (Cycle Performance (h)@Current Density (mA cm−2)) | Full Cell (Cathode@Capacity (mAh g−1)@Current Density (C)) | References |
---|---|---|---|---|
Na-β″-Al2O3 | 2.1@RT | / | / | [110] |
BASE-CNT | 0.36@58 | 1000@0.1 | Na3V2(PO4)3@100.6@0.1 | [111] |
YSZ/BASE | 0.46@RT | 330@0.5 | O3-NaNi0.45Cu0.05Mn0.4Ti0.1O2@110@1 | [112] |
Sn-BASE | 1.1@60 | 1000@0.5 | PTO-PEO@180@0.5 | [113] |
G-NASICON | 0.6@RT | 1000@0.5 | Na3V2(PO4)3@108@1 | [115] |
NZSP-PPC-PEO | 0.12@RT | 1000@0.1 | Na3V2(PO4)3@102@1 | [52] |
NZSP/PVDF-HFP | 0.132@60 | 400@0.2 | Na3V2(PO4)3@95@0.2 | [116] |
NZSP/PPE | 0.693@25 | 200@0.05 | Na0.67Ni0.33Mn0.67O2@112@0.1 | [117] |
PEO-NaClO4-SiO2-Emim FSI | 1.3@RT | / | Y-Na2O3Zr/C@90.5@0.05 | [128] |
NZSP-Na2B4O7 | 1.72@RT | 2500@0.3 | Na3V1.5Cr0.5(PO4)3@107@30 mA g−1 | [118] |
TiO2-NZSP | 0.53@25 | 860@0.1 | [129] | |
Ca-NZSP | 1.67@25 | 600@0.3 | Na3V2(PO4)3@103.1@0.2 | [130] |
SnOx/Sn/NZSP | 0.59@RT | 1500@0.1 | NaTi2(PO4)3@96.4@0.2 | [119] |
SnS2/NZSP | 0.42@RT | 800@0.1 | Na3V2(PO4)3@101.2@0.5 | [120] |
ANs-GPE | 0.713@25 | 300@1 | Na3V2(PO4)3@85.5@5 | [114] |
NZSP | 0.85@RT | 1000@0.2 | Na3V1.5Cr0.5(PO4)3@114.6@0.2 | [121] |
AlF3/NZSP | 0.2415@RT | 150@0.15 | Na3V2(PO4)3@111@1 | [131] |
H-NASICON | 0.07@65 | 550@0.25 | NaTi2(PO4)3@110@0.2 | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Li, J.; Li, J. Recent Development of Electrolyte Engineering for Sodium Metal Batteries. Batteries 2022, 8, 157. https://doi.org/10.3390/batteries8100157
Ji Y, Li J, Li J. Recent Development of Electrolyte Engineering for Sodium Metal Batteries. Batteries. 2022; 8(10):157. https://doi.org/10.3390/batteries8100157
Chicago/Turabian StyleJi, Yingying, Jiabao Li, and Jinliang Li. 2022. "Recent Development of Electrolyte Engineering for Sodium Metal Batteries" Batteries 8, no. 10: 157. https://doi.org/10.3390/batteries8100157
APA StyleJi, Y., Li, J., & Li, J. (2022). Recent Development of Electrolyte Engineering for Sodium Metal Batteries. Batteries, 8(10), 157. https://doi.org/10.3390/batteries8100157