Effect of Ga2O3 Addition on the Properties of Garnet-Type Ta-Doped Li7La3Zr2O12 Solid Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Ta-Doped LLZO with Ga2O3 Addition
2.2. Electrochemical Characterization of Ta-Doped LLZO with Ga2O3 Addition
3. Results and Discussion
3.1. Structural Analysis of Ta-Doped LLZO with Ga2O3 Addition
3.2. Ionic Conductin Properties of Ta-Doped LLZO with Ga2O3 Addition
3.3. Tolerance for Li Dendrite Growth of Ta-Doped LLZO with Ga2O3 Addition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, F.; Kotobuki, M.; Song, S.; Lei, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, K.; Chen, R.; Liu, T.; Zhang, Y.; Nan, C. Oxide electrolytes for lithium batteries. J. Am. Ceram. Soc. 2015, 98, 3603–3623. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Samson, A.J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975. [Google Scholar] [CrossRef]
- Wang, C.; Fu, K.; Palakkathodi, K.S.; McOwen, D.W.; Zhang, L.; Hitz, G.T.; Nolan, A.; Samson, A.; Wachsman, E.D.; Mo, Y.; et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef]
- Alexander, G.V.; Indu, M.S.; Murugan, R. Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: Interfacial chemistry, dendrite growth, and critical current densities. Lonics 2021, 27, 4105–4126. [Google Scholar] [CrossRef]
- Patra, S.; Narayanasamy, J.; Panneerselvam, M.R. Review—Microstructural modification in lithium garnet solid-state electrolytes: Emerging trends. J. Electrochem. Soc. 2022, 169, 030548. [Google Scholar] [CrossRef]
- Chen, B.; Sarkar, S.; Kammampata, S.P.; Zhou, C.; Thangadurai, V. Li-stuffed garnet electrolytes: Structure, ionic conductivity, chemical stability, interface, and applications. Can. J. Chem. 2022, 100, 311–319. [Google Scholar] [CrossRef]
- Kim, Y.; Yoo, A.; Schmidt, R.; Sharafi, A.; Lee, H.; Wolfenstine, J.; Sakamoto, J. Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium. Front. Energy Res. 2016, 4, 20. [Google Scholar] [CrossRef]
- Zhu, Y.; Connell, J.G.; Tepavcevic, S.; Zapol, P.; Garcia-Mendez, R.; Taylor, N.J.; Sakamoto, J.; Ingram, B.J.; Curtiss, L.A.; Freeland, J.W.; et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energ. Mater. 2019, 9, 1803440. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Tran, N.T.T.; Schierholz, R.; Liu, Z.; Windmüller, A.; Lin, C.-A.; Zu, Q.; Lu, X.; Yu, S.; Tempel, H.; et al. Instability of Ga-substituted Li7La3Zr2O12 toward metallic Li. J. Mater. Chem. A 2022, 10, 10998–11009. [Google Scholar] [CrossRef]
- McClelland, I.; El-Shinawi, H.; Booth, S.G.; Regoutz, A.; Clough, J.; Altus, S.; Cussen, E.J.; Baker, P.J.; Cussen, S.A. The role of the reducible dopant in solid electrolyte–lithium metal interfaces. Chem. Mater. 2022, 34, 5054–5064. [Google Scholar] [CrossRef]
- Wang, M.; Carmona, E.; Gupta, A.; Albertus, P.; Sakamoto, J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 2020, 11, 5201. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Shen, Y.; Lin, Y.; Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 2015, 57, 27–30. [Google Scholar] [CrossRef]
- Cheng, E.J.; Sharafi, A.; Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 2017, 223, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Inada, R.; Yasuda, S.; Hosokawa, H.; Saito, M.; Tojo, T.; Sakurai, Y. Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode. Batteries 2018, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Kazyak, E.; Garcia-Mendez, R.; LePage, W.S.; Sharafi, A.; Davis, A.L.; Sanchez, A.J.; Chen, K.-H.; Haslam, C.; Sakamoto, J.; Dasgupta, N.P. Li penetration in ceramic solid electrolytes: Operando microscopy analysis of morphology, propagation, and reversibility. Matter 2020, 2, 1025–1048. [Google Scholar] [CrossRef]
- Sharafi, A.; Kazyak, E.; Davis, A.L.; Yu, S.; Thompson, T.; Siegel, D.J.; Dasgupta, N.P.; Sakamoto, J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 2017, 29, 7961–7968. [Google Scholar] [CrossRef]
- Basappa, R.H.; Ito, T.; Yamada, H. Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention. J. Electrochem. Soc. 2017, 164, A666–A671. [Google Scholar] [CrossRef]
- Taylor, N.J.; Stangeland-Molo, S.; Haslam, C.G.; Sharafi, A.; Thompson, T.; Wang, M.; Garcia-Mendez, R.; Sakamoto, J. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J. Power Sources 2018, 396, 314–318. [Google Scholar] [CrossRef]
- Motoyama, M.; Tanaka, Y.; Yamamoto, T.; Tsuchimine, N.; Kobayashi, S.; Iriyama, Y. The Active interface of Ta-doped Li7La3Zr2O12 for Li plating/stripping revealed by acid aqueous etching. ACS Appl. Energy Mater. 2019, 2, 6720–6731. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Roddatis, V.; Chandran, C.V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617–10626. [Google Scholar] [CrossRef]
- Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rublo, G.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lu, Y.; Guo, H.; Song, Z.; Xiu, T.; Badding, M.E.; Wen, Z. None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density. ACS Appl. Energy Mater. 2018, 1, 5355–5365. [Google Scholar] [CrossRef]
- Zhou, C.; Samson, A.J.; Hofstetter, K.; Thangadurai, V. A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustain. Energy Fuels 2018, 2, 2165–2170. [Google Scholar] [CrossRef]
- Sastre, J.; Futscher, M.H.; Pompizi, L.; Aribia, A.; Priebe, A.; Overbeck, J.; Stiefel, M.; Tiwari, A.N.; Romanyuk, Y.E. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 2021, 2, 76. [Google Scholar] [CrossRef]
- Du, M.; Sun, Y.; Liu, B.; Chen, B.; Liao, K.; Ran, R.; Cai, R.; Zhou, W.; Shao, Z. Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater. 2021, 31, 2101556. [Google Scholar] [CrossRef]
- Guo, S.; Wu, T.-T.; Sun, G.; Zhang, S.-D.; Li, B.; Zhang, H.-S.; Qi, M.-Y.; Liu, X.-H.; Cao, A.-M.; Wan, L.-J. Interface engineering of a ceramic electrolyte by Ta2O5 nanofilms for ultrastable lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2201498. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, W.; Kunz, M.; Persson, K.; Tamura, N.; Chen, G.; Doeff, M. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 2073–2081. [Google Scholar] [CrossRef]
- Sharafi, A.; Meyer, H.M.; Nanda, J.; Wolfenstine, J.; Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 2017, 5, 21491–21504. [Google Scholar] [CrossRef]
- Matsuki, Y.; Noi, K.; Deguchi, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Lithium dissolution/deposition behavior of Al-doped Li7La3Zr2O12 ceramics with different grain sizes. J. Electrochem. Soc. 2019, 166, A5470. [Google Scholar] [CrossRef]
- Basappa, R.H.; Ito, T.; Morimura, T.; Bekarevich, R.; Mitsuishi, K.; Yamada, H. Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J. Power Sources 2017, 363, 145–152. [Google Scholar] [CrossRef]
- Xu, B.; Li, W.; Duan, H.; Wang, H.; Guo, Y.; Li, H.; Liu, H. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J. Power Sources 2017, 354, 68–73. [Google Scholar] [CrossRef]
- Hosokawa, H.; Takeda, A.; Inada, R.; Sakurai, Y. Tolerance for Li dendrite penetration in Ta-doped Li7La3Zr2O12 solid electrolytes sintered with Li2.3C0.7B0.3O3 additive. Mater. Lett. 2020, 279, 128481. [Google Scholar] [CrossRef]
- Hong, M.; Dong, Q.; Xie, H.; Clifford, B.C.; Qian, J.; Wang, X.; Luo, J.; Hu, L. Ultrafast sintering of solid-state electrolytes with volatile fillers. ACS Energy Lett. 2021, 6, 3753–3760. [Google Scholar] [CrossRef]
- Guo, H.; Su, J.; Zha, W.; Xiu, T.; Song, Z.; Badding, M.E.; Jin, J.; Wen, Z. Achieving high critical current density in Ta-doped Li7La3Zr2O12/MgO composite electrolytes. J. Alloys Compd. 2021, 856, 157222. [Google Scholar] [CrossRef]
- Zheng, C.; Ruan, Y.; Su, J.; Song, Z.; Xiu, T.; Jin, J.; Badding, M.E.; Wen, Z. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem. Eng. J. 2021, 411, 128508. [Google Scholar]
- Hitz, G.T.; McOwen, D.M.; Zhang, L.; Ma, Z.; Fu, Z.; Wen, Y.; Gong, Y.; Dai, J.; Hamann, T.R.; Hu, L.; et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 2019, 22, 50–57. [Google Scholar] [CrossRef]
- Huo, H.; Liang, J.; Zhao, N.; Li, X.; Lin, X.; Zhao, Y.; Adair, K.; Li, R.; Guo, X.; Sun, X. Dynamics of the garnet/Li interface for dendrite-free solid-state batteries. ACS Energy Lett. 2020, 5, 2156–2164. [Google Scholar] [CrossRef]
- Koshikawa, H.; Matsuda, S.; Kamiya, K.; Miyayama, M.; Kubo, Y.; Uosaki, K.; Hashimoto, K.; Nakanishi, S. Electrochemical impedance analysis of the Li/Au-Li7La3Zr2O12 interface during Li dissolution/deposition cycles: Effect of pre-coating Li7La3Zr2O12 with Au. J. Electroanal. Chem. 2019, 835, 143–149. [Google Scholar] [CrossRef]
- Wang, M.; Wolfenstine, J.; Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 2019, 296, 842–847. [Google Scholar] [CrossRef]
- Wang, M.; Choudhury, R.; Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 2019, 3, 2165–2178. [Google Scholar] [CrossRef]
- Krauskopf, T.; Mogwitz, B.; Hartmann, H.; Singh, D.K.; Zeier, W.G.; Janek, J. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv. Energy Mater. 2020, 10, 2000945. [Google Scholar] [CrossRef]
- Liu, X.; Garcia-Mendez, R.; Lupini, A.R.; Cheng, Y.; Hood, Z.D.; Han, F.; Sharafi, A.; Idrobo, J.C.; Dudney, N.J.; Wang, C.; et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 2021, 20, 1485–1490. [Google Scholar]
- Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.-Z.; Yuan, H.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies. Adv. Funct. Mater. 2021, 31, 2009925. [Google Scholar] [CrossRef]
- Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett. 2022, 7, 1492–1527. [Google Scholar] [CrossRef]
- Matsuda, Y.; Sakaida, A.; Sugimoto, K.; Mori, D.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.25M0.25La3Zr2O12 (M: Al3+ and Ga3+). Solid State Ion. 2017, 311, 69–74. [Google Scholar] [CrossRef]
- Inada, R.; Takeda, A.; Yamazaki, Y.; Miyake, S.; Sakurai, Y.; Thangadurai, V. Effect of postannealing on the properties of a Ta-doped Li7La3Zr2O12 solid electrolyte degraded by Li dendrite penetration. ACS Appl. Energy Mater. 2020, 3, 12517–12524. [Google Scholar] [CrossRef]
- Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62. [Google Scholar] [CrossRef]
- Wakasugi, J.; Munakata, H.; Kanamura, K. Improvement of sintering of Li6.25Al0.25La3Zr2O12 by using pre-heat treatment. Solid. State Ion. 2017, 309, 9–14. [Google Scholar] [CrossRef]
- Allen, J.L.; Wolfenstein, J.; Rangasamy, E.; Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 2012, 206, 315–319. [Google Scholar] [CrossRef]
- Eckhardt, J.K.; Klar, P.J.; Janek, J.; Heiliger, C. Interplay of dynamic constriction and interface morphology between reversible metal anode and solid electrolyte in solid state batteries. ACS Appl. Mater. Interface 2022, 14, 33545–33554. [Google Scholar] [CrossRef] [PubMed]
Ga2O3 Addition/mol % | ρ/g cm−3 | Asurf/m2 g−1 |
---|---|---|
Not added | 4.84 | 2.418 |
1 | 4.96 | 1.488 |
2 | 4.98 | 1.139 |
3 | 4.76 | 1.475 |
5 | 4.81 | 1.163 |
7 | 4.76 | 1.144 |
Ga2O3 Addition/mol % | σtotal at 27 °C/mS cm−1 | Ea/eV |
---|---|---|
Not added | 0.85 | 0.38 |
1 | 0.95 | 0.31 |
2 | 0.90 | 0.36 |
3 | 0.98 | 0.31 |
5 | 1.1 | 0.33 |
7 | 0.91 | 0.30 |
Ga2O3 Addition/mol % | Rint/Ω cm2 | Qint/F |
---|---|---|
Not added | 9.5 | 1.1 × 10−7 |
1 | 6.0 | 5.8 × 10−7 |
2 | 6.7 | 2.3 × 10−7 |
3 | 10.1 | 1.2 × 10−7 |
5 | 17.5 | 2.3 × 10−6 |
7 | 2.0 | 4.7 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamazaki, Y.; Miyake, S.; Akimoto, K.; Inada, R. Effect of Ga2O3 Addition on the Properties of Garnet-Type Ta-Doped Li7La3Zr2O12 Solid Electrolyte. Batteries 2022, 8, 158. https://doi.org/10.3390/batteries8100158
Yamazaki Y, Miyake S, Akimoto K, Inada R. Effect of Ga2O3 Addition on the Properties of Garnet-Type Ta-Doped Li7La3Zr2O12 Solid Electrolyte. Batteries. 2022; 8(10):158. https://doi.org/10.3390/batteries8100158
Chicago/Turabian StyleYamazaki, Yusuke, Shotaro Miyake, Keigo Akimoto, and Ryoji Inada. 2022. "Effect of Ga2O3 Addition on the Properties of Garnet-Type Ta-Doped Li7La3Zr2O12 Solid Electrolyte" Batteries 8, no. 10: 158. https://doi.org/10.3390/batteries8100158
APA StyleYamazaki, Y., Miyake, S., Akimoto, K., & Inada, R. (2022). Effect of Ga2O3 Addition on the Properties of Garnet-Type Ta-Doped Li7La3Zr2O12 Solid Electrolyte. Batteries, 8(10), 158. https://doi.org/10.3390/batteries8100158