Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data
Abstract
:1. Introduction
2. Methodology
2.1. Lifetime Distribution
2.2. Censoring Data
2.3. Derivation of Time-Dependet Failure Rates
3. Database of Lifetime Values
3.1. Field Data of Batteries
3.2. Failure Modes of Lead Batteries
3.3. Open Circuit
3.4. Plates and Grids
3.5. Worn out and Abused
3.6. Short Circuit
3.7. Serviceable
4. Results
4.1. Estimated Weibull Parameters
4.2. Failure Rates of Lead Battery Failure Modes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stolte, T.; Bagschik, G.; Maurer, M. Safety goals and functional safety requirements for actuation systems of automated vehicles. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar]
- Dominguez-Garcia, A.D.; Kassakian, J.G.; Schindall, J.E. Reliability evaluation of the power supply of an electrical power net for safety-relevant applications. Reliab. Eng. Syst. Saf. 2006, 5, 505–514. [Google Scholar] [CrossRef]
- Kurita, Y.; Münzing, P.; Koller, O. Future Powernet Topology for Automated Driving. In Proceedings of the 2017 JSAE Annual Congress, Yokohama, Japan, 24–26 May 2017; pp. 109–114. [Google Scholar]
- Koehler, A.; Bertsche, B. An Approach of Fail Operational Power Supply for Next Generation Vehicle Powernet Architectures. In Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020-PSAM15), Venice, Italy, 1–5 November 2020; pp. 32–58. [Google Scholar] [CrossRef]
- Koehler, A.; Bertsche, B. Cyclisation of Safety Diagnoses: Influence on the Evaluation of Fault Metrics. In Proceedings of the 67th Annual Reliability & Maintainability Symposium (RAMS2021), Orlando, FL, USA, 24–27 May 2021. to be published. [Google Scholar]
- Albers, J.; Koch, I. Functional Safety of Lead-acid Batteries in New Vehicle Applications. In Proceedings of the 14th European Lead Battery Conference, Edinburgh, Scotland, 9–12 September 2014. [Google Scholar]
- Albers, J.; Koch, I. Reliability of lead-acid batteries. In The Printed Proceedings of EEHE 2016 Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement VII; Expert Publishers: Tübingen, Germany, 2016; ISBN 978-3-8169-3346-5. [Google Scholar]
- ADAC e.V. Pannenstatistik 2014. Allgemeiner Deutscher Automobil-Club e.V. 2014. Available online: https://bit.ly/3eqyYyf (accessed on 9 June 2021).
- Mürken, M.; Kübel, D.; Thanheiser, A.; Gratzfeld, P. Analysis of automotive lead-acid batteries exchange rate on the base of field data acquisition. In Proceedings of the IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–6. [Google Scholar]
- Kumar, E.S.; Sarkar, B. Improvement of life time and reliability of battery. Int. J. Eng. Sci. Adv. Technol. 2012, 2, 1210–1217. [Google Scholar]
- ADAC e.V. Pannenstatistik 2020. Allgemeiner Deutscher Automobil-Club e.V. 2020. Available online: https://bit.ly/3srT4gn (accessed on 9 June 2021).
- Knauer, D. Report on Battery Failure Modes; Battery Council International: Chicago, IL, USA, 2020. [Google Scholar]
- Knauer, D. Report on Battery Failure Modes; Battery Council International: Chicago, IL, USA, 2015. [Google Scholar]
- Pasha, G.R.; Khan, M.S.; Pasha, A.H. Empirical analysis of the Weibull distribution for failure data. J. Stat. 2006, 10, 33–45. [Google Scholar]
- Bertsche, B.; Lechner, G. Zuverlässigkeit im Fahrzeug-und Maschinenbau: Ermittlung von Bauteil-und System-Zuverlässigkeiten; Springer: Berlin, Germany, 2006. [Google Scholar]
- Cohen, A.C. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 1965, 7, 579–588. [Google Scholar] [CrossRef]
- Zhang, L.F.; Xie, M.; Tang, L.C. Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data. Reliab. Eng. Syst. Saf. 2006, 8, 930–939. [Google Scholar] [CrossRef]
- Tevetoglu, T.; Bertsche, B. On the Coverage Probability of Bias-Corrected Confidence Bounds. In Proceedings of the Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), Vancouver, BC, Canada, 20–23 August 2020; pp. 1–6. [Google Scholar]
- Ross, R. Bias and standard deviation due to Weibull parameter estimation for small data sets. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 28–42. [Google Scholar] [CrossRef]
- Blei-Akkumulatoren-Starterbatterien Teil 2: Maße von Batterien und Kennzeichnung von Anschlüssen—DIN EN 50342-2; Verband der Elektrotechnik, Elektronik und Informationstechnik: Frankfurt am Main, Germany, 2021.
- Lead-Acid Starter Batteries—JSA JIS D 5301; Japanese Standards Association: Tokyo, Japan, 2019.
- Ruetschi, P. Aging mechanisms and service life of lead–acid batteries. J. Power Source 2004, 127, 33–44. [Google Scholar] [CrossRef]
- Brik, K.; Ammar, F. Causal tree analysis of depth degradation of the lead acid battery. J. Power Source 2013, 228, 39–46. [Google Scholar] [CrossRef]
- Culpin, B.; Rand, D.A.J. Failure modes of lead/acid batteries. J. Power Source 1991, 4, 415–438. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, J.; Ye, W.; Zhao, W.; Zhou, G.; Yonglang, G. Investigation of lead dendrite growth in the formation of valveregulated lead-acid batteries for electric bicycle applications. J. Power Source 2015, 286, 182–192. [Google Scholar] [CrossRef]
Lifetime [h] | Failure Mode A | Failure Mode B | Functional |
---|---|---|---|
10,000 | 1 | 0 | 0 |
20,000 | 1 | 0 | 0 |
15,000 | 0 | 1 | 0 |
25,000 | 0 | 1 | 0 |
5000 | 0 | 0 | 1 |
15,000 | 0 | 0 | 1 |
35,040 | 0 | 0 | 0 |
35,040 | 0 | 0 | 0 |
35,040 | 0 | 0 | 0 |
Failure Mode | Shape Parameter b | Normalised Scale Parameter T |
---|---|---|
Serviceable | 1.239 | 1.134 |
Open Circuit | 1.819 | 2.127 |
Plates & Grids | 2.812 | 0.582 |
Worn out & Abused | 2.255 | 0.826 |
Short Circuit | 2.637 | 0.596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conradt, R.; Heidinger, F.; Birke, K.P. Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data. Batteries 2021, 7, 39. https://doi.org/10.3390/batteries7020039
Conradt R, Heidinger F, Birke KP. Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data. Batteries. 2021; 7(2):39. https://doi.org/10.3390/batteries7020039
Chicago/Turabian StyleConradt, Rafael, Frederic Heidinger, and Kai Peter Birke. 2021. "Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data" Batteries 7, no. 2: 39. https://doi.org/10.3390/batteries7020039
APA StyleConradt, R., Heidinger, F., & Birke, K. P. (2021). Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data. Batteries, 7(2), 39. https://doi.org/10.3390/batteries7020039