Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,029)

Search Parameters:
Keywords = failure rates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 584 KiB  
Article
Influenza A vs. COVID-19: A Retrospective Comparison of Hospitalized Patients in a Post-Pandemic Setting
by Mihai Aronel Rus, Daniel Corneliu Leucuța, Violeta Tincuța Briciu, Monica Iuliana Muntean, Vladimir Petru Filip, Raul Florentin Ungureanu, Ștefan Troancă, Denisa Avârvarei and Mihaela Sorina Lupșe
Microorganisms 2025, 13(8), 1836; https://doi.org/10.3390/microorganisms13081836 - 6 Aug 2025
Abstract
In this paper we aimed to compare seasonality, clinical characteristics, and outcomes of Influenza A and COVID-19 in the context of influenza reemergence and ongoing Omicron circulation. We performed a retrospective comparative analysis at the Teaching Hospital of Infectious Diseases in Cluj-Napoca, Romania. [...] Read more.
In this paper we aimed to compare seasonality, clinical characteristics, and outcomes of Influenza A and COVID-19 in the context of influenza reemergence and ongoing Omicron circulation. We performed a retrospective comparative analysis at the Teaching Hospital of Infectious Diseases in Cluj-Napoca, Romania. We included adult patients hospitalized with Influenza A or COVID-19 between 1 November 2022 and 31 March 2024. Data were collected on demographics, clinical presentation, complications, and in-hospital mortality. We included 899 COVID-19 and 423 Influenza A patients. The median age was 74 years for COVID-19 and 65 for Influenza A (p < 0.001). The age-adjusted Charlson comorbidity index was higher in COVID-19 patients (5 vs. 3, p < 0.001). Despite this age gap, acute respiratory failure was more common in Influenza A (62.8% vs. 55.7%, p = 0.014), but ventilation rates did not differ significantly. Multivariate models showed Influenza A was associated with increased risk of intensive-care unit (ICU) admission or ventilation, whereas older COVID-19 patients had higher in-hospital mortality (5.67% vs. 3.3%, p = 0.064). Omicron COVID-19 disproportionately affected older patients with comorbidities, contributing to higher in-hospital mortality. However, Influenza A remained a significant driver of respiratory failure and ICU admission, underscoring the importance of preventive measures in high-risk groups. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

19 pages, 7100 KiB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 (registering DOI) - 6 Aug 2025
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

13 pages, 1183 KiB  
Article
Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience
by Matjaž Bunc, Gregor Verček, Luka Vitez, Primož Holc, Klemen Steblovnik and Miha Šušteršič
Medicina 2025, 61(8), 1419; https://doi.org/10.3390/medicina61081419 - 6 Aug 2025
Abstract
Background and Objectives: Transcatheter heart valve (THV) selection is challenging as self-expanding valves (SEVs) are associated with lower post-procedural mean aortic gradients, while balloon-expandable valves (BEVs) have lower rates of paravalvular leak (PVL) and permanent pacemaker implantation (PPI). We aimed to compare [...] Read more.
Background and Objectives: Transcatheter heart valve (THV) selection is challenging as self-expanding valves (SEVs) are associated with lower post-procedural mean aortic gradients, while balloon-expandable valves (BEVs) have lower rates of paravalvular leak (PVL) and permanent pacemaker implantation (PPI). We aimed to compare the 30-day and 1-year outcomes following Myval BEV (Meril Life Sciences, Vapi, Gujarat, India) and intra-annular Portico SEV (Abbott, St. Paul, MN, USA) implantation. Materials and Methods: We retrospectively analyzed the data from the all-comer TAVI registry of the University Medical Centre Ljubljana, Slovenia, from October 2017 to August 2023. Safety and efficacy outcomes following Myval BEV and Portico SEV implantation were compared overall and after propensity score matching. Results: Of the total 1152 THVs implanted, 97 patients (8%) received a Myval BEV and 47 (4%) a Portico SEV. After propensity score matching, there were no significant differences between the two patient cohorts regarding 30-day (Myval 0.0% vs. Portico 2.9%, p = 1.000) and 1-year mortality (Myval 0.0% vs. Portico 5.9%, p = 0.492). Likewise, the rates of new PPI, device failure (mean aortic gradient and more than mild PVL), and periprocedural in-hospital complications were comparable between the two groups. Conclusions: In this retrospective analysis of two intra-annular THVs, the Myval BEV was associated with comparable short- and mid-term outcomes as the Portico SEV. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

29 pages, 15691 KiB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

16 pages, 23926 KiB  
Article
Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail
by Wenhui Yang, Hongliang Zhao, Chengxiao He and Longhui Qin
Biomimetics 2025, 10(8), 512; https://doi.org/10.3390/biomimetics10080512 - 5 Aug 2025
Abstract
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability [...] Read more.
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability of the manipulated objects. Moreover, the grasping and movement actions, as well as the inconsistency between the robot base and the end-effector frame, tend to result in angular misalignment, usually leading to assembly failure. Bio-inspired by the human finger, we designed a tactile finger in this paper with three characteristics: (1) Compliance: A soft ‘skin’ layer provides passive compliance for plenty of manipulation actions, thus increasing the tolerance for alignment errors. (2) Tactile Perception: Two types of sensing elements are embedded into the soft skin to tactilely sense the involved contact status. (3) Enhanced manipulation force: A rigid fingernail is designed to enhance the manipulation force and enable potential delicate operations. Moreover, a tactile-based alignment algorithm is proposed to search for the optimal orientation angle about the z axis. In the application of U-disk insertion, the three characteristics are validated and a success rate of 100% is achieved, whose generalization capability is also validated through the assembly of three types of electrical connectors. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

16 pages, 459 KiB  
Article
Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
by Olivieri Silvia, Mazzanti Sara, Gelo Signorino Gabriele, Pallotta Francesco, Ficola Andrea, Canovari Benedetta, Di Muzio Vanessa, Di Prinzio Michele, Cerutti Elisabetta, Donati Abele, Giacometti Andrea, Barchiesi Francesco and Brescini Lucia
Antibiotics 2025, 14(8), 797; https://doi.org/10.3390/antibiotics14080797 - 5 Aug 2025
Abstract
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted [...] Read more.
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted across four Intensive Care Units (ICUs) in three hospitals in the Marche region of Italy. The primary objective was to evaluate the 30-day clinical outcomes and identify risk factors associated with 30-day clinical failure—defined as death, microbiological recurrence, or persistence within 30 days after discontinuation of therapy—in critically ill patients treated with CAZ-AVI. Methods: The study included all adult critically ill patients admitted to the participating ICUs between January 2020 and September 2023 who received CAZ-AVI for at least 72 h for the treatment of a confirmed or suspected Gram-negative bacterial (GNB) infection. Results: Among the 161 patients included in the study, CAZ-AVI treatment resulted in a positive clinical outcome (i.e., clinical improvement and 30-day survival) in 58% of cases (n = 93/161), while the overall mortality rate was 24% (n = 38/161). Relapse or persistent infection occurred in a substantial proportion of patients (25%, n = 41/161). Notably, acquired resistance to CAZ-AVI was observed in 26% of these cases, likely due to suboptimal use of the drug in relation to its pharmacokinetic/pharmacodynamic (PK/PD) properties in critically ill patients. Furthermore, treatment failure was more frequent among immunosuppressed individuals, particularly liver transplant recipients. Conclusions: This study demonstrates that the mortality rate among ICU patients treated with this novel antimicrobial combination is consistent with findings from other studies involving heterogeneous populations. However, the rapid emergence of resistance underscores the need for vigilant surveillance and the implementation of robust antimicrobial stewardship strategies. Full article
Show Figures

Figure 1

13 pages, 1755 KiB  
Article
Early Intrableb Features on Anterior Segment Swept-Source Optical Coherence Tomography Predict Surgical Success After Trabeculectomy in Uveitic and Neovascular Glaucoma
by Sangwoo Moon, Seungmin Lee and Jiwoong Lee
J. Clin. Med. 2025, 14(15), 5499; https://doi.org/10.3390/jcm14155499 - 5 Aug 2025
Abstract
Background: This study aimed to evaluate prognostic factors of early filtering blebs using anterior segment swept-source optical coherence tomography (AS SS-OCT) in patients with uveitic and neovascular glaucoma. Methods: This retrospective cohort study included 22 eyes from 22 patients who underwent [...] Read more.
Background: This study aimed to evaluate prognostic factors of early filtering blebs using anterior segment swept-source optical coherence tomography (AS SS-OCT) in patients with uveitic and neovascular glaucoma. Methods: This retrospective cohort study included 22 eyes from 22 patients who underwent trabeculectomy (11 eyes each with uveitic or neovascular glaucoma). Intrableb characteristics were assessed using AS SS-OCT at 1 month, postoperatively. Surgical success was defined as intraocular pressure (IOP) ≤ 18 mmHg and ≥30% IOP reduction without medication at 12 months. Logistic regression was used to identify the prognostic factors associated with IOP control. Results: Sixteen eyes (72.7%) achieved surgical success, while six (27.3%) were unsuccessful. Eyes with successful IOP control at 12 months showed thicker and less reflective bleb walls with microcysts compared with unsuccessful cases of IOP control, in the early postoperative phase (all p < 0.033). However, IOP at the time of OCT did not significantly differ between the groups (p = 0.083). Multivariate logistic regression analysis revealed that higher bleb wall reflectivity at 1-month post-trabeculectomy was significantly associated with a higher surgical failure rate at 12 months after trabeculectomy (hazard ratio = 1.072, p = 0.032). Conclusions: Early intrableb assessment using AS SS-OCT may be beneficial for managing filtering blebs after trabeculectomy in uveitic and neovascular glaucoma. Higher bleb wall reflectivity in the early post-trabeculectomy phase may indicate poor features of the filtering bleb, suggesting the need for timely interventions for refractory cases. Full article
(This article belongs to the Special Issue Glaucoma Surgery: Current Challenges and Future Perspectives)
Show Figures

Figure 1

12 pages, 451 KiB  
Article
Impact of Metabolically Healthy Obesity on Cardiovascular Outcomes in Older Adults with HFpEF: Insights from a Nationwide Sample
by Adil Sarvar Mohammed, Hafeezuddin Ahmed, Sachin Singh, Cyrus Mutinda Munguti, Lakshmi Subramanian, Sashwath Srikanth, Lakshmi Sai Meghana Kodali, Maya Asami Takagi, Umera Yasmeen, Hassaan Imtiaz, Akhil Jain, Saad Chaudhry and Rupak Desai
J. Clin. Med. 2025, 14(15), 5495; https://doi.org/10.3390/jcm14155495 - 4 Aug 2025
Abstract
Background: Clinical outcomes among older adults hospitalized with heart failure with preserved ejection fraction (HFpEF) in the setting of metabolically healthy obesity (MHO) remain insufficiently explored. This study aimed to evaluate whether MHO status is associated with different rates of major adverse cardiac [...] Read more.
Background: Clinical outcomes among older adults hospitalized with heart failure with preserved ejection fraction (HFpEF) in the setting of metabolically healthy obesity (MHO) remain insufficiently explored. This study aimed to evaluate whether MHO status is associated with different rates of major adverse cardiac and cerebrovascular events (MACCEs) during HFpEF-related hospitalizations compared to patients without MHO. Methods: Data from the 2019 National Inpatient Sample (NIS) database was analyzed using relevant ICD-10 codes to identify HFpEF admissions in older adults. Propensity score matching (1:1) was applied to generate balanced cohorts of patients with and without MHO. Multivariable adjustments were performed to assess primary outcomes, including MACCEs, all-cause mortality (ACM), acute myocardial infarction (AMI), dysrhythmia, cardiac arrest (CA), and stroke. Statistical significance was set at p < 0.05. Results: Each MHO cohort included 22,405 patients with a median age of 75 years. The MHO+ group demonstrated a significantly higher risk of dysrhythmia (OR 1.32, 95% CI 1.21–1.43, p < 0.001). Interestingly, an “obesity paradox” was observed, as the MHO+ cohort had lower odds of MACCEs (OR 0.70, 95% CI 0.61–0.81, p < 0.001), ACM (OR 0.66, 95% CI 0.54–0.82, p < 0.001), and AMI (OR 0.71, 95% CI 0.59–0.86, p = 0.001) compared to MHO−. No significant differences were found for CA or stroke between the groups. Conclusions: Although the MHO+ group had an elevated risk of dysrhythmia, they exhibited more favorable outcomes in terms of MACCEs, ACM, and AMI—supporting the concept of an “obesity paradox.” Further research is needed to better understand the role of MHO as a comorbid condition in patients with HFpEF. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
State Analysis of Grouped Smart Meters Driven by Interpretable Random Forest
by Zhongdong Wang, Zhengbo Zhang, Weijiang Wu, Zhen Zhang, Xiaolin Xu and Hongbin Li
Electronics 2025, 14(15), 3105; https://doi.org/10.3390/electronics14153105 - 4 Aug 2025
Abstract
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the [...] Read more.
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the traditional expiration-based rotation method has become inadequate due to the extended service life of modern smart meters, necessitating a shift toward status-driven targeted management. Existing multifactor comprehensive assessment methods often face challenges in balancing accuracy and interpretability. To address these limitations, this study proposes a novel method for analyzing the status of smart meter groups using an interpretable random forest model. The approach incorporates an expert-knowledge-guided grouping assessment strategy, develops a multi-source heterogeneous feature set with strong correlations to meter status, and enhances the random forest model with the SHAP (SHapley Additive exPlanations) interpretability framework. Compared to conventional methods, the proposed approach demonstrates superior efficiency and reliability in predicting the failure rates of smart meter groups within distribution network areas, offering robust support for the maintenance and management of smart meters. Full article
Show Figures

Figure 1

15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

10 pages, 430 KiB  
Article
Anteroposterior Diameter Is Associated with Conversion from Right Minithoracotomy to Median Sternotomy in Minimally Invasive Cardiac Surgery
by Quynh Nguyen, Durr Al-Hakim and Richard C. Cook
J. Pers. Med. 2025, 15(8), 353; https://doi.org/10.3390/jpm15080353 - 4 Aug 2025
Viewed by 24
Abstract
Background: Minimally invasive cardiac surgery (MICS) via right minithoracotomy is a safe, reproducible approach with excellent outcomes and reduced costs compared to median sternotomy. Despite careful patient selection, conversion to sternotomy occurs in 1–3% of cases and is associated with significantly higher [...] Read more.
Background: Minimally invasive cardiac surgery (MICS) via right minithoracotomy is a safe, reproducible approach with excellent outcomes and reduced costs compared to median sternotomy. Despite careful patient selection, conversion to sternotomy occurs in 1–3% of cases and is associated with significantly higher morbidity and mortality. Small body habitus, particularly a short anteroposterior (AP) diameter, may increase the risk of conversion, but this has not been previously studied. This study aims to identify preoperative factors associated with conversion to improve patient selection for MICS. As cardiovascular surgery becomes increasingly personalized, identifying anatomical factors that predict technical complexity is essential. Methods: This retrospective study included 254 adult patients who underwent elective MICS between 2015 and 2024 at a tertiary hospital. Patient characteristics, computed tomography (CT) scans, intraoperative parameters, and postoperative outcomes were reviewed. AP diameter was defined as the distance from the posterior sternum to the anterior vertebral body at the mitral valve level on CT. Statistical analyses included Mann−Whitney and Fisher’s exact/chi-square tests. Results: Conversion to sternotomy occurred in 1.6% of patients (n = 4). All converted patients were female. The converted group had a significantly shorter median AP diameter (100 mm vs. 124 mm, p = 0.020). Conversion was associated with higher rates of stroke and infection (25.0% vs. 0.8%, p = 0.047 for both), but no significant differences in hospital stay, bleeding, or renal failure. Conclusions: An AP diameter of less than 100 mm was associated with a higher risk of conversion to sternotomy in MICS. Incorporating simple, reproducible preoperative imaging metrics into surgical planning may advance precision-guided cardiac surgery and optimize patient outcomes. Full article
(This article belongs to the Special Issue Clinical Progress in Personalized Management of Cardiac Surgery)
Show Figures

Figure 1

10 pages, 506 KiB  
Article
How Much Variance Exists Among Published Definitions of Proximal Junctional Kyphosis? A Retrospective Cohort Study of Adult Spinal Deformity
by Tim T. Bui, Karan Joseph, Alexander T. Yahanda, Samuel Vogl, Miguel Ruiz-Cardozo and Camilo A. Molina
J. Clin. Med. 2025, 14(15), 5469; https://doi.org/10.3390/jcm14155469 - 4 Aug 2025
Viewed by 34
Abstract
Background/Objectives: We sought to characterize the variance and overlap among definitions of Proximal Junctional Kyphosis (PJK) used in the adult spinal deformity (ASD) literature. PJK is defined as excess in PJK angle, a Cobb angle between the upper-instrumented vertebra (UIV) and a [...] Read more.
Background/Objectives: We sought to characterize the variance and overlap among definitions of Proximal Junctional Kyphosis (PJK) used in the adult spinal deformity (ASD) literature. PJK is defined as excess in PJK angle, a Cobb angle between the upper-instrumented vertebra (UIV) and a supra-adjacent vertebra (SAV), either one (UIV+1) or two (UIV+2) levels rostral of the UIV. No expert consensus exists for threshold angle or which SAV to use. Methods: A total of 116 thoracolumbar fusion patients ≥ 65 years old were reviewed. The UIV+1 and UIV+2 angles were measured. Six definitions of PJK from the literature were evaluated. These definitions were selected based on citation frequency, historical relevance, and accessibility through commonly used databases. Pearson’s Chi-squared and pairwise comparisons were performed to evaluate the distinctness and agreement rates among these definitions. Results: The six definitions of PJK were as follows: [PJK20] PJK angle ≥ 20° with UIV+2 as the (SAV), [PJK10] PJK angle ≥ 10° with a >10° change from pre-op with UIV+2 as the SAV, [PJK2SD] PJK angle > 2 standard deviations from average with UIV+1 as the SAV, [PJK10+10] PJK angle ≥ 10° with a >10° change from pre-op with UIV+1 as the SAV, [PJK15] PJK angle > 15° with UIV+1 as the SAV, and [PJK30] PJK angle > 30° with UIV+2 as the SAV, or displaced rod fracture, or reoperation within 2 years for junctional failure, pseudoarthrosis, or rod fracture. [PJK10] and [PJK2SD] were the most distinct definitions while [PJK20], [PJK10+10], [PJK15], and [PJK30] showed no significant pairwise differences. [PJK2SD] was stringent, while definition [PJK30] included unique diagnostic information not captured by other definitions. Conclusions: The use of [PJK20], [PJK10+10], [PJK15], or [PJK30] is recommended for consistency, with [PJK15] presenting the best balance. Stringent [PJK2SD] may be beneficial for identifying severe PJK, though with low sensitivity. Overall, PJK definitions must be standardized for the consistent reporting of clinical outcomes and research comparability. Full article
(This article belongs to the Special Issue Optimizing Outcomes in Scoliosis and Complex Spinal Surgery)
Show Figures

Figure 1

20 pages, 4007 KiB  
Article
Sublethal and Lethal Effects of Low-Dose Prothioconazole Alone and in Combination with Low-Dose Lambda-Cyhalothrin on Carabid Beetles in a Field-Realistic Scenario
by Enno Merivee, Anne Mürk, Karin Nurme, Mati Koppel, Angela Ploomi and Marika Mänd
Pollutants 2025, 5(3), 24; https://doi.org/10.3390/pollutants5030024 - 4 Aug 2025
Viewed by 84
Abstract
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such [...] Read more.
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such effects remain largely unstudied in non-target predatory carabid beetles. The carabid beetle Platynus assimilis was subjected to repeated oral and continuous contact exposure to low doses of prothioconazole (20 g ha−1), lambda-cyhalothrin (0.4 g ha−1), or their combination over a 64-day period. The food consumption rate, body mass, locomotor activity, and mortality were monitored throughout the experiment. All pesticide-treated groups showed significantly increased final mortality, with median lethal times (LT50) of 51.6 days for prothioconazole, 60.3 days for lambda-cyhalothrin, and 12.2 days for their combination. A significant synergistic effect on mortality was observed in the combined treatment group, with the highest synergistic ratio detected 20 days after the first exposure. Pesticide-treated beetles exhibited significant abnormalities in locomotor activity and body mass compared to the untreated group. These findings demonstrate that both time-cumulative mortality and potential synergistic interactions, reflecting field-realistic conditions, must be considered in ERA. Failure to do so may lead to an underestimation of pesticide toxicity to predatory carabids. Full article
Show Figures

Graphical abstract

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 - 1 Aug 2025
Viewed by 214
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

Back to TopTop