Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Objectives and Methodology of the Study
2.1. Objective of the Study
2.2. Methodology of the Study
2.2.1. Product Sustainability Software: GaBi
2.2.2. Function and Functional Unit
2.2.3. System Boundaries and Cut-Off Criteria
2.2.4. Method of Impact Assessment
2.2.5. Types and Sources of Data
3. Life Cycle Inventory (LCI)
3.1. Waterjet-Based Recycling: Process Description
3.2. Greenhouse Gases and Cumulative Energy Consumption
4. Life Cycle Impact Assessment: Global Warming Potential (LCIA-GWP)
5. Life Cycle Evaluation
5.1. Comparison between Systems
5.2. Comparison between Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reddy, T.B. Linden’s Handbook of Batteries, 4th ed.; Linden, D., Ed.; McGraw-Hill: New York, NY, USA, 2011; ISBN 9780071624213. [Google Scholar]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Pillot, C. The Rechargeable Battery Market and Main Trends 2014–2025. In Proceedings of the 31st International Battery Seminar & Exhibit, Nica, France, 6 October 2015. [Google Scholar]
- Kosai, S.; Takata, U.; Yamasue, E. Natural resource use of a traction lithium-ion battery production based on land disturbances through mining activities. J. Clean. Prod. 2021, 280, 124871. [Google Scholar] [CrossRef]
- Gaines, L. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 2014, 1–2, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, A.M.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of batteries: A review of current processes and technologies. J. Power Source 2004, 130, 291–298. [Google Scholar] [CrossRef]
- EBRA. Noticeable Growth of the Quantity of Batteries Recycled; European Battery Recycling Association: Brussels, Belgium, 2012. [Google Scholar]
- Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2020, 55, 391–419. [Google Scholar] [CrossRef]
- Steward, D.; Mayyas, A.; Mann, M. Economics and Challenges of Li-Ion Battery Recycling from End-of-Life Vehicles. Proc. Manuf. 2019, 33, 272–279. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Concerning Batteries and Waste Batteries, Repealing Directive 2006/66/EC and Amending Regulation (EU) No 2019/1020. Available online: https://ec.europa.eu/environment/waste/batteries/pdf/Proposal_for_a_Regulation_on_batteries_and_waste_batteries.pdf (accessed on 17 February 2021).
- Boyden, A.; Soo, V.K.; Doolan, M. The Environmental Impacts of Recycling Portable Lithium-Ion Batteries. Proc. CIRP 2016, 48, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environ. Sci. Technol. 2017, 51, 1662–1669. [Google Scholar] [CrossRef]
- Zhan, R.; Payne, T.; Leftwich, T.; Perrine, K.; Pan, L. De-agglomeration of cathode composites for direct recycling of Li-ion batteries. Waste Manag. 2020, 105, 39–48. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Gao, R.; Sun, C.; Xu, L.; Zhou, T.; Zhuang, L.; Xie, H. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation. Vacuum 2020, 173, 109181. [Google Scholar] [CrossRef]
- Sieber, T.; Ducke, J.; Rietig, A.; Langner, T.; Acker, J. Recovery of Li(Ni0.33Mn0.33Co0.33)O₂ from Lithium-Ion Battery Cathodes: Aspects of Degradation. Nanomaterials 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [Green Version]
- Zang, G.; Zhang, J.; Xu, S.; Xing, Y. Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis. Energy 2021, 218, 119504. [Google Scholar] [CrossRef]
- Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. [Google Scholar] [CrossRef]
- Sloop, S.E.; Crandon, L.; Allen, M.; Lerner, M.M.; Zhang, H.; Sirisaksoontorn, W.; Gaines, L.; Kim, J.; Lee, M. Cathode healing methods for recycling of lithium-ion batteries. Sustain. Mater. Technol. 2019, 22, e00113. [Google Scholar] [CrossRef]
- Doose, S.; Mayer, J.K.; Michalowski, P.; Kwade, A. Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations. Metals 2021, 11, 291. [Google Scholar] [CrossRef]
- Deutsches Insitut für Normung e.V. Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen; Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- Deutsches Insitut für Normung e.V. Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen; Beuth Verlag GmbH: Berlin, Germany, 2006. [Google Scholar]
- Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Umweltminister Franz Untersteller Überreicht Förderbescheide für Demontagefabrik “DeMoBat” in Höhe von 13 Millionen Euro; Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg: Stuttgart, Germany, 2020.
- Sphera Solutions, Inc. GaBi Manual. Available online: http://www.gabi-software.com/fileadmin/GaBi_Manual/GaBi_6_manual.pdf (accessed on 27 January 2021).
- European Commission. International Reference Life Cycle Data System (ILCD) Handbook: General guide for Life Cycle Assessment—Detailed Guidance; European Commission: Luxemburg, 2010. [Google Scholar]
- Bruijn, H.; Duin, R.; Huijbregts, M.A.J.; Guinee, J.B.; Gorree, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Koning, A.; Oers, L.; et al. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; ISBN 978-0-306-48055-3. [Google Scholar]
- Kaltschmitt, M.; Schebek, L. Umweltbewertung für Ingenieure: Methoden und Verfahren; Springer Vieweg: Berlin, Germany, 2015; ISBN 978-3-642-36989-6. [Google Scholar]
- Buchert, M.; Sutter, J. Aktualisierte Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien; Oeko-Institut e.V.: Berlin, Germany; Darmstadt, Germany, 2016. [Google Scholar]
- Momber, A.W. Image processing as a tool for high-pressure water jet coating removal assessment. Int. J. Adv. Manuf. Technol. 2016, 87, 571–578. [Google Scholar] [CrossRef]
- Ning, D.; Wang, Q.; Tian, J.; Gong, Y.; Du, H.; Chen, S.; Hou, J. Experimental Study on the Coating Removing Characteristics of High-Pressure Water Jet by Micro Jet Flow. Micromachines 2021, 12, 173. [Google Scholar] [CrossRef]
- Buchert, M.; Jenseit, W.; Merz, C.; Schüler, D. Verbundprojekt: Entwicklung Eines Realisierbaren Recyclingkonzepts für die Hochleistungsbatterien Zukünftiger Elektrofahrzeuge—LiBRi: Teilprojekt: LCA der Recyclingverfahren; Oeko-Institut e.V.: Berlin, Germany; Darmstadt, Germany, 2011. [Google Scholar]
- Buchert, M.; Sutter, J. Aktualisierte Ökobilanz zum Recyclingverfahren EcoBatRec für Lithium-Ionen-Batterien; Oeko-Institut e.V.: Berlin, Germany; Darmstadt, Germany, 2016. [Google Scholar]
- Accardo, A.; Dotelli, G.; Musa, M.L.; Spessa, E. Life Cycle Assessment of an NMC Battery for Application to Electric Light-Duty Commercial Vehicles and Comparison with a Sodium-Nickel-Chloride Battery. Appl. Sci. 2021, 11, 1160. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
Complete Battery | 100% | |
---|---|---|
Cathode | 25.2% | |
Manganese | 7.4% | |
Lithium | 1.2% | |
Cobalt | 1.0% | |
Nickel | 2.0% | |
Aluminium | 6.2% | |
Oxygen | 5.5% | |
Others | 1.9% | |
Anode | 20.4% | |
Separator | 4.4% | |
Electrolyte | 9.6% | |
Cell housing | 5.1% | |
Pack and Module | 34.7% | |
Others | 0.6% |
Studies | GWP | Cumulative Energy Consumption |
---|---|---|
LiBRi (indirect recycling) [33] | 4.248 kg CO2e | 61.3 MJ |
EcoBatRec (indirect recycling) [34] | 1.282 kg CO2e | 14.5 MJ |
LithoRec II (indirect recycling) [30] | 2.133 kg CO2e | 35.5 MJ |
DeMoBat (direct recycling) | 0.158 kg CO2e | 3.3 MJ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurz, L.; Faryadras, M.; Klugius, I.; Reichert, F.; Scheibe, A.; Schmidt, M.; Wörner, R. Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries. Batteries 2021, 7, 29. https://doi.org/10.3390/batteries7020029
Kurz L, Faryadras M, Klugius I, Reichert F, Scheibe A, Schmidt M, Wörner R. Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries. Batteries. 2021; 7(2):29. https://doi.org/10.3390/batteries7020029
Chicago/Turabian StyleKurz, Leonard, Mojtaba Faryadras, Ines Klugius, Frederik Reichert, Andreas Scheibe, Matthias Schmidt, and Ralf Wörner. 2021. "Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries" Batteries 7, no. 2: 29. https://doi.org/10.3390/batteries7020029
APA StyleKurz, L., Faryadras, M., Klugius, I., Reichert, F., Scheibe, A., Schmidt, M., & Wörner, R. (2021). Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries. Batteries, 7(2), 29. https://doi.org/10.3390/batteries7020029