Next Article in Journal
Optimized Fuzzy-Cuckoo Controller for Active Power Control of Battery Energy Storage System, Photovoltaic, Fuel Cell and Wind Turbine in an Isolated Micro-Grid
Next Article in Special Issue
Reviews on Chinese Patents Regarding the Nickel/Metal Hydride Battery
Previous Article in Journal
On-Line Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Optimized Gray Model GM(1,1)
Previous Article in Special Issue
Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Batteries 2017, 3(3), 22;

Comparison of C14- and C15-Predomiated AB2 Metal Hydride Alloys for Electrochemical Applications

Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
BASF/Battery Materials—Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309, USA
Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller, Norway
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Author to whom correspondence should be addressed.
Academic Editor: Catia Arbizzani
Received: 24 May 2017 / Revised: 7 July 2017 / Accepted: 11 July 2017 / Published: 28 July 2017
(This article belongs to the Special Issue Nickel Metal Hydride Batteries 2017)
Full-Text   |   PDF [1886 KB, uploaded 28 July 2017]   |  


Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances. View Full-Text
Keywords: metal hydride; nickel metal hydride battery; Laves phase alloy; electrochemistry; synergetic effect metal hydride; nickel metal hydride battery; Laves phase alloy; electrochemistry; synergetic effect

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Young, K.-H.; Nei, J.; Wan, C.; Denys, R.V.; Yartys, V.A. Comparison of C14- and C15-Predomiated AB2 Metal Hydride Alloys for Electrochemical Applications. Batteries 2017, 3, 22.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Batteries EISSN 2313-0105 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top