Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Microstrcuture
3.2. Gaseous Phase Hydrogen Storage
3.3. Corrosion Behavior
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BCC | Body-centered-cubic |
PCT | Pressure-concentration-temperature |
CR | Corrosion rate |
icorr | Corrosion current density |
EW | Equivalent weight |
ML | Mass loss |
XRD | X-ray diffractometer |
SEM | Scanning electron microscopy |
BSE | Back-scattering electron |
EDS | Energy dispersive spectroscopy |
RHSC | Reversible hydrogen storage capacity |
Ecorr | Corrosion potential |
References
- Okada, M.; Kuriiwa, T.; Tamura, T.; Kamegawa, A. Ti-V-Cr b.c.c. alloys with high protium content. J. Alloys Compd. 2002, 330–332, 511–516. [Google Scholar] [CrossRef]
- Tamura, T.; Kazumi, T.; Kamegawa, A.; Takamura, H.; Okada, M. Protium absorption properties and protide formations of Ti-Cr-V alloys. J. Alloys Compd. 2003, 356–357, 505–509. [Google Scholar] [CrossRef]
- Young, K.; Fetcenko, M.A.; Ouchi, T.; Im, J.; Ovshinsky, S.R.; Li, F.; Reinhout, M. Hydrogen Storage Materials Having Exunit cellent Kinetics, Capacity, and Cycle Stability. U.S. Patent 7,344,676, 18 March 2008. [Google Scholar]
- Akiba, E.; Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Cho, S.; Han, C.; Park, C.; Akiba, E. The hydrogen storage characteristics of Ti–Cr–V alloys. J. Alloys Compd. 1999, 288, 294–298. [Google Scholar] [CrossRef]
- Kuriwa, T.; Tamura, T.; Amemiya, T.; Fusa, T.; Kamegawa, A.; Takemura, T.; Okada, M. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compd. 1999, 293–295, 433–436. [Google Scholar] [CrossRef]
- Seo, C.; Kim, J.; Lee, P.S.; Lee, J. Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydrides. J. Alloys Compd. 2003, 348, 252–257. [Google Scholar] [CrossRef]
- Tamura, T.; Tominaga, Y.; Matsumoto, K.; Fuda, T.; Kuriiwa, T.; Kamegawa, A.; Takamura, H.; Okada, M. Protium absorption properties of Ti-V-Cr-Mn alloys with a b.c.c. structure. J. Alloys Compd. 2002, 330–332, 522–525. [Google Scholar] [CrossRef]
- Huang, T.; Wu, Z.; Chen, J.; Yu, X.; Xia, B.; Xu, N. Dependence of hydrogen storage capacity of TiCr1.8–x(VFe)x on V-Fe content. Mater. Sci. Eng. A 2004, 385, 17–21. [Google Scholar]
- Yu, X.B.; Wu, Z.; Xia, B.J.; Xu, N.X. Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys. J. Alloys Compd. 2004, 372, 272–277. [Google Scholar] [CrossRef]
- Hang, Z.; Xiao, X.; Tan, D.; He, Z.; Li, W.; Li, S.; Chen, C.; Chen, L. Microstructure and hydrogen storage properties of Ti10V84−xFe6Zrx (x = 1–8) alloys. Int. J. Hydrog. Energy 2010, 35, 3080–3086. [Google Scholar] [CrossRef]
- Yooa, J.; Shim, G.; Cho, S.; Park, C. Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 2007, 32, 2977–2981. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Liang, H.; Zhou, X.; Wu, C.; Tao, M.; Pang, L. Hydrogen storage properties of V–Ti–Cr–Fe alloys. J. Alloys Compd. 2008, 454, 427–431. [Google Scholar] [CrossRef]
- Miao, H.; Gao, M.; Liu, Y.; Lin, Y.; Wang, J.; Pan, H. Microstructure and electrochemical properties of Ti–V-based multiphase hydrogen storage electrode alloys. Int. J. Hydrog. Energy 2007, 32, 3947–3953. [Google Scholar] [CrossRef]
- Liu, X.P.; Cuevas, F.; Jiang, L.J.; Latroche, M.; Li, Z.; Wang, S. Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition. J. Alloys Compd. 2009, 476, 403–407. [Google Scholar] [CrossRef]
- Yoo, J.; Shim, G.; Park, C.; Kim, W.; Cho, S. Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti-Cr-V alloy. Int. J. Hydrog. Energy 2009, 34, 9116–9121. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Li, Z.; Huang, Z.; Wang, S. Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive. J. Alloys Compd. 2009, 471, L36–L38. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, Q.; Madigan, B.; Xue, W. Long-term corrosion behavior of martensitic steel welds in static molten Pb–17Li alloy at 550 °C. Corros. Sci. 2015, 96, 178–185. [Google Scholar] [CrossRef]
- Chuang, H.J.; Huang, S.S.; Ma, C.Y.; Chan, S.L.I. Effect of annealing heat treatment on an atomized AB2 hydrogen storage alloy. J. Alloys Compd. 1999, 285, 284–291. [Google Scholar] [CrossRef]
- Hang, Z.; Xiao, X.; Li, S.; Ge, H.; Chen, C.; Chen, L. Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy. J. Alloys Compd. 2012, 529, 128–133. [Google Scholar] [CrossRef]
- Yu, X.B.; Wu, Z.; Xia, B.J.; Xu, N.X. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity. J. Chem. Phys. 2004, 121, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Ouchi, T.; Huang, B.; Nei, J. Structure, hydrogen storage, and electrochemical properties of body-centered-cubic Ti40V30Cr15Mn13X2 alloys (X = B, Si, Mn, Ni, Zr, Nb, Mo, and La). Batteries 2015, 1, 74–90. [Google Scholar] [CrossRef]
- Young, K.; Huang, B.; Regmi, R.K.; Lawes, G.; Liu, Y. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloy. J. Alloys Compd. 2010, 506, 831–840. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Koch, J.; Fetcenko, M.A. Compositional optimization of vanadium-free hypo-stoichiometric AB2 metal hydride alloy for Ni/MH battery application. J. Alloys Compd. 2012, 510, 97–106. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Fetcenko, M.A. Effects of B, Fe, Gd, Mg, and C on the structure, hydrogen storage, and electrochemical properties of vanadium-free AB2 metal hydride alloy. J. Alloys Compd. 2012, 511, 242–250. [Google Scholar] [CrossRef]
- American Society for Testing and Materials, ASTM International. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements; ASTM: West Conshohocken, PA, USA, 1999. [Google Scholar]
- Handzlik, P.; Fitzner, K. Corrosion resistance of Ti and Ti–Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China 2013, 23, 866–875. [Google Scholar] [CrossRef]
- Young, K.; Nei, J. The current status of hydrogen storage alloy development for electrochemical application. Materials 2013, 6, 4574–4608. [Google Scholar] [CrossRef]
- Cho, S.; Enoki, H.; Akiba, E. Effect of Fe addition on hydrogen storage characteristics of Ti0.16Zr0.05Cr0.22V0.57 alloy. J. Alloys Compd. 2000, 307, 304–310. [Google Scholar] [CrossRef]
- Enomoto, M. The Cr-Ti-V system. J. Phase Equilibria 1992, 13, 195–200. [Google Scholar] [CrossRef]
- Dou, T.; Wu, Z.; Mao, J.; Xu, N. Application of commercial ferrovanadium to reduce cost of Ti–V-based BCC phase hydrogen storage alloys. Mater. Sci. Eng. A 2008, 476, 34–38. [Google Scholar] [CrossRef]
- Santos, S.F.; Huot, J. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions. J. Alloys Compd. 2009, 472, 247–251. [Google Scholar] [CrossRef]
- Chen, N.; Li, R.; Zhu, Y.; Liu, Y.; Pan, H. Electrochemical hydrogenation and dehydrogenation mechanisms of the Ti–V base multiphase hydrogen storage electrode alloy. Acta Metall. Sin. 2004, 40, 1200–1204. [Google Scholar]
- Young, K.; Ouchi, T.; Nei, J.; Wang, L. Annealing effects on Laves phase-related body-centered-cubic solid solution metal hydride alloys. J. Alloys Compd. 2016, 654, 216–225. [Google Scholar] [CrossRef]
- Itoh, H.; Arashima, H.; Kubo, K.; Kabutomori, T. The influence of microstructure on hydrogen absorption properties of Ti–Cr–V alloys. J. Alloys Compd. 2002, 330, 287–291. [Google Scholar] [CrossRef]
- Towata, S.; Noritake, T.; Itoh, A.; Aoki, M.; Miwa, K. Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys. Int. J. Hydrog. Energy 2013, 38, 3024–3029. [Google Scholar] [CrossRef]
- Ashworth, M.A.; Davenport, A.J.; Ward, R.M.; Hamilton, H.G.C. Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgy. Corros. Sci. 2010, 52, 2413–2421. [Google Scholar] [CrossRef]
- Young, K.; Wong, D.F.; Nei, J. Effects of vanadium/nickel contents in Laves phase-related body-centered-cubic solid solution metal hydride alloys. Batteries 2015, 1, 34–53. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Meng, T.; Wong, D.F. Studies on the synergetic effects in multi-phase metal hydride alloys. Batteries 2016, 2, 15. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Xu, Y.; Liu, Z. Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl− Containing Environment. J. Mater. Sci. Technol. 2013, 29, 168–174. [Google Scholar] [CrossRef]
- Kamimura, T.; Stratmann, M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci. 2001, 43, 429–447. [Google Scholar] [CrossRef]
- Shih, C.; Shih, C.; Su, Y.; Su, L.H.L.; Chang, M.; Lin, S. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros. Sci. 2004, 46, 427–441. [Google Scholar] [CrossRef]
- Güleryüz, H.; Çimenoğlu, H. Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials 2004, 25, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Ng, W.F.; Wong, M.H.; Cheng, F.T. Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing. J. Alloys Compd. 2009, 469, 286–292. [Google Scholar] [CrossRef]
- Iba, H.; Akiba, E. The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys. J. Alloys Compd. 1995, 231, 508–512. [Google Scholar] [CrossRef]
- Tsukahara, M.; Takahashi, K.; Mishima, T.; Isomura, A.; Sakai, T. V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure. J. Alloys Compd. 1996, 236, 151–155. [Google Scholar] [CrossRef]
Crystallographic Description | |||||
---|---|---|---|---|---|
Sample | Phases | Space Group (No.) | A | c | Unit Cell Volume (Å3) |
As-cast | BCC (V) | (229) | 3.00 | 27.08 | |
C14 (Laves) | (194) | 4.85 | 7.94 | 161.7 | |
C15 (Laves) | Fdm (227) | 6.943 | 334.69 | ||
Annealed | BCC (V) | (229) | 3.01 | 27.37 | |
α-Ti | (194) | 2.98 | 4.73 | 36.24 | |
Quenched | BCC (V) | (229) | 3.01 | 27.37 | |
α-Ti | (194) | 2.98 | 4.73 | 36.24 |
Composition (at%) | Phase Proportion (% Area) | |||||||
---|---|---|---|---|---|---|---|---|
Sample | Location | Ti | V | Cr | Fe | Ti/Cr Ratio | Phase Identification | |
As-cast | C | 17.7 (1.1) | 43.5 (1.6) | 36.5 (2.2) | 2.3 (0.7) | 0.5 | BCC | 78.5 |
D | 24.7 (0.8) | 37.8 (0.7) | 34.0 (0.4) | 3.5 (0.3) | 0.7 | C14 | 1.3 | |
E | 23.0 (3.7) | 41.4 (2.4) | 35.5 (1.4) | 2.0 (0.2) | 0.6 | C15 | 20.2 | |
Annealed | C | 17.7 (1.9) | 43.5 (1.3) | 36.5 (2.9) | 2.3 (0.2) | 0.5 | BCC | 82.0 |
E | 65.9 (5.2) | 18.6 (2.8) | 14.9 (2.2) | 0.6 (0.2) | 4.4 | α-Ti/BCC | 12.0 | |
Quenched | C | 21.8 (1.5) | 40.0 (1.3) | 35.6 (1.2) | 2.6 (1.7) | 0.6 | BCC | 80.5 |
E | 47.3 (3.7) | 21.6 (2.5) | 24.7 (1.4) | 6.4 (0.5) | 1.9 | α-Ti/BCC | 19.5 |
Sample | Absorption Capacity (wt %) | Capacity Remaining (wt %) | RHSC (wt %) | Plateau Pressure (MPa) |
---|---|---|---|---|
As-cast | 0.86 | 0.42 | 0.44 | 1.32 |
Annealed | 1.54 | 0.28 | 1.26 | 0.68 |
Quenched | 1.04 | 0.39 | 0.65 | 2.34 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Abdul, J.; Hearth Chown, L.; Kolawole Odusote, J.; Nei, J.; Young, K.-H.; Taiye Olayinka, W. Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy. Batteries 2017, 3, 19. https://doi.org/10.3390/batteries3020019
Mohammed Abdul J, Hearth Chown L, Kolawole Odusote J, Nei J, Young K-H, Taiye Olayinka W. Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy. Batteries. 2017; 3(2):19. https://doi.org/10.3390/batteries3020019
Chicago/Turabian StyleMohammed Abdul, Jimoh, Lesley Hearth Chown, Jamiu Kolawole Odusote, Jean Nei, Kwo-Hsiung Young, and Woli Taiye Olayinka. 2017. "Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy" Batteries 3, no. 2: 19. https://doi.org/10.3390/batteries3020019
APA StyleMohammed Abdul, J., Hearth Chown, L., Kolawole Odusote, J., Nei, J., Young, K. -H., & Taiye Olayinka, W. (2017). Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy. Batteries, 3(2), 19. https://doi.org/10.3390/batteries3020019