Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Battery Sample Preparation
2.2. Battery Safety Assessment-ARC Test
2.3. Material Level Thermal Failure Analysis Test—DSC-TG-MS
2.4. Characterization
3. Results and Discussion
3.1. Material Information and Electrochemical Performance
3.2. Battery Safety Comparison
3.3. Thermal Stability of Cathode and Cathode Oxygen Release Behavior
3.4. Structural Stability of Cathode During Heating
3.5. Structural Degradation of Cathode After Thermal Abuse
3.6. Exothermic Behavior of Full-Cell Material-Level Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarascon, J.-M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Ji, H.; Wu, J.; Cai, Z.; Liu, J.; Kwon, D.-H.; Kim, H.; Urban, A.; Papp, J.K.; Foley, E.; Tian, Y.; et al. Ultrahigh Power and Energy Density in Partially Ordered Lithium-Ion Cathode Materials. Nat. Energy 2020, 5, 213–221. [Google Scholar] [CrossRef]
- Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y.-M.; Yoon, W.-S. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2020, 59, 2578–2605. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, D.; Chu, M.; Liu, Z.; Yang, L.; Wu, W.; Ning, D.; Li, W.; Liu, X.; Li, J.; et al. A Comprehensive Understanding on the Anionic Redox Chemistry of High-Voltage Cathode Materials for High-Energy-Density Lithium-Ion Batteries. Chem. Soc. Rev. 2025, 54, 3441–3474. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhu, H.; Xia, Y.; Yin, Z.; Qin, Y.; Li, T.; Zhang, Q.; Gu, L.; Peng, Y.; Zhang, J.; et al. A Li-Rich Layered Oxide Cathode with Negligible Voltage Decay. Nat. Energy 2023, 8, 1078–1087. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, Y.; Wang, L.; Fu, N.; Li, Y.; Luo, Y.; Wang, J.; Xiao, X.; Wang, X.; Yang, X.; et al. Challenges of Thermal Stability of High-Energy Layered Oxide Cathode Materials for Lithium-Ion Batteries: A Review. Mater. Today 2023, 69, 236–261. [Google Scholar] [CrossRef]
- Meng, J.; Qu, G.; Huang, Y. Stabilization Strategies for High-Capacity NCM Materials Targeting for Safety and Durability Improvements. eTransportation 2023, 16, 100233. [Google Scholar] [CrossRef]
- Li, J.; Gao, P.; Tong, B.; Cheng, Z.; Cao, M.; Mei, W.; Wang, Q.; Sun, J.; Qin, P. Revealing the Mechanism of Pack Ceiling Failure Induced by Thermal Runaway in NCM Batteries: A Coupled Multiphase Fluid-Structure Interaction Model for Electric Vehicles. eTransportation 2024, 20, 100335. [Google Scholar] [CrossRef]
- He, M.; Chartouni, D.; Landmann, D.; Colombi, S. Safety Aspects of Stationary Battery Energy Storage Systems. Batteries 2024, 10, 418. [Google Scholar] [CrossRef]
- Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2018, 2, 2047–2064. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, X.; Huang, W.; He, X.; Wang, L.; Ouyang, M. Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High-Energy Batteries. Adv. Energy Mater. 2023, 13, 2203841. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Wu, Y.; Xu, G.; Lu, L.; Hou, J.; Zhang, W.; et al. Thermal Runaway Mechanism of Lithium-Ion Battery with LiNi0.8Mn0.1Co0.1O2 Cathode Materials. Nano Energy 2021, 85, 105878. [Google Scholar] [CrossRef]
- Shi, C.; Wang, H.; Shen, H.; Wang, J.; Li, C.; Li, Y.; Xu, W.; Li, M. Thermal Runaway Characteristics and Gas Analysis of LiNi0.9Co0.05Mn0.05O2 Batteries. Batteries 2024, 10, 84. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, C.; Wang, F.; Manthiram, A. Navigating Thermal Stability Intricacies of High-Nickel Cathodes for High-Energy Lithium Batteries. Nat. Energy 2025, 10, 490–501. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.; Wang, Y.; Feng, X.; Jiang, F.; Ouyang, M. Correlating Phase Transition with Heat Generation through Calorimetric Data. eScience 2024, 4, 100226. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, D.; Liu, G.; Mu, D.; Wang, L.; Wu, B.; Liu, J.; Wu, N.; He, X. Correlation between Thermal Stabilities of Nickel-Rich Cathode Materials and Battery Thermal Runaway. Int. J. Energy Res. 2021, 45, 20867–20877. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Li, L.; Yu, L.; Diao, J.; Zhou, T.; Li, S.; Dai, A.; Zhao, W.; Xu, S.; et al. Origin of Structural Degradation in Li-Rich Layered Oxide Cathode. Nature 2022, 606, 305–312. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, Z.; Ren, P.-G.; Zhang, B.; Chen, Z.; Guo, Z.; Ren, F.; Sun, Z.; Liu, S.; Song, P.; et al. Recent Advances in Oxygen Redox Activity of Lithium-Rich Manganese-Based Layered Oxides Cathode Materials: Mechanism, Challenges and Strategies (Adv. Energy Mater. 40/2024). Adv. Energy Mater. 2024, 14, 2470173. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Zhao, S.; Li, H.; Yu, H. Oxygen Anionic Redox Activated High-Energy Cathodes: Status and Prospects. eTransportation 2021, 8, 100118. [Google Scholar] [CrossRef]
- Hua, W.; Wang, S.; Knapp, M.; Leake, S.J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J.R.; Grey, C.P.; Ehrenberg, H.; et al. Structural Insights into the Formation and Voltage Degradation of Lithium- and Manganese-Rich Layered Oxides. Nat. Commun. 2019, 10, 5365. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Hu, L.; Duan, Q.; Liu, X.; Huang, S.; Jiang, Y.; Li, W.; Zhao, B.; Sun, X.; Zhang, J. Understanding Lattice Oxygen Redox Behavior in Lithium-Rich Manganese-Based Layered Oxides for Lithium-Ion and Lithium-Metal Batteries from Reaction Mechanisms to Regulation Strategies. Adv. Energy Mater. 2023, 13, 2302957. [Google Scholar] [CrossRef]
- Ohneseit, S.; Finster, P.; Floras, C.; Lubenau, N.; Uhlmann, N.; Seifert, H.J.; Ziebert, C. Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC). Batteries 2023, 9, 237. [Google Scholar] [CrossRef]
- Xia, X.; Dahn, J.R. A Study of the Reactivity of De-Intercalated NaNi0.5Mn0.5O2 with Non-Aqueous Solvent and Electrolyte by Accelerating Rate Calorimetry. J. Electrochem. Soc. 2012, 159, A1048. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Liu, M.; Li, Y.; Zhao, H.; Ren, H.; Zhao, Y.; Zhou, Q.; Feng, X.; Shi, J.; et al. Elucidating Thermal Decomposition Kinetic Mechanism of Charged Layered Oxide Cathode for Sodium-Ion Batteries. Adv. Mater. 2025, 37, 2415610. [Google Scholar] [CrossRef] [PubMed]
Characteristic Temperature | Physical Meaning | Criteria |
---|---|---|
T1 | The starting temperature of the battery’s continuous self-heating | dT/dt = 0.02 °C/min |
T2 | Battery thermal runaway trigger temperature | dT/dt = 1 °C/s |
T3 | Maximum temperature of battery thermal runaway | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Z.; Feng, S.; Han, Z.; Wang, Z.; Xu, C.; He, X.; Wang, L.; Wang, Y.; Feng, X. Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries. Batteries 2025, 11, 311. https://doi.org/10.3390/batteries11080311
Pei Z, Feng S, Han Z, Wang Z, Xu C, He X, Wang L, Wang Y, Feng X. Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries. Batteries. 2025; 11(8):311. https://doi.org/10.3390/batteries11080311
Chicago/Turabian StylePei, Zhaoqiang, Shaobo Feng, Zhibo Han, Zihua Wang, Chengshan Xu, Xiangming He, Li Wang, Yu Wang, and Xuning Feng. 2025. "Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries" Batteries 11, no. 8: 311. https://doi.org/10.3390/batteries11080311
APA StylePei, Z., Feng, S., Han, Z., Wang, Z., Xu, C., He, X., Wang, L., Wang, Y., & Feng, X. (2025). Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries. Batteries, 11(8), 311. https://doi.org/10.3390/batteries11080311