Physics-Informed Neural Networks for Advanced Thermal Management in Electronics and Battery Systems: A Review of Recent Developments and Future Prospects
Abstract
:1. Introduction
2. PINNs and Variations
2.1. Mathematical Formulation of PINNs
2.2. PINN Variants
2.2.1. Balancing Residual and Boundary Losses
2.2.2. Adaptive Sampling Strategies
2.2.3. Variational Formulations in PINNs
2.2.4. Domain Decomposition PINNs
3. Applications of PINNs in Electronics Thermal Management
3.1. Chip Thermal Management
3.2. Board Thermal Management
3.3. System Thermal Management
4. Applications of PINNs in Battery Thermal Management
4.1. Battery Cell Thermal Management
4.2. Battery Pack Thermal Management
4.3. Battery System Thermal Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pistoia, G. Battery Operated Devices and Systems; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-444-53214-5. [Google Scholar]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- De Bock, H.P.; Huitink, D.; Shamberger, P.; Lundh, J.S.; Choi, S.; Niedbalski, N.; Boteler, L. A System to Package Perspective on Transient Thermal Management of Electronics. J. Electron. Packag. 2020, 142, 041111. [Google Scholar] [CrossRef]
- Falcone, M.; Palka Bayard De Volo, E.; Hellany, A.; Rossi, C.; Pulvirenti, B. Lithium-Ion Battery Thermal Management Systems: A Survey and New CFD Results. Batteries 2021, 7, 86. [Google Scholar] [CrossRef]
- Li, X.; He, F.; Ma, L. Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation. J. Power Sources 2013, 238, 395–402. [Google Scholar] [CrossRef]
- Kim, G.-H.; Pesaran, A. Battery Thermal Management Design Modeling. World Electr. Veh. J. 2007, 1, 126–133. [Google Scholar] [CrossRef]
- Chen, W.; Hou, S.; Shi, J.; Han, P.; Liu, B.; Wu, B.; Lin, X. Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management. Batteries 2022, 8, 128. [Google Scholar] [CrossRef]
- Eymard, R.; Gallouët, T.; Herbin, R. Finite Volume Methods. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1018. ISBN 978-0-444-50350-3. [Google Scholar]
- Birbarah, P.; Gebrael, T.; Foulkes, T.; Stillwell, A.; Moore, A.; Pilawa-Podgurski, R.; Miljkovic, N. Water Immersion Cooling of High Power Density Electronics. Int. J. Heat Mass Transf. 2020, 147, 118918. [Google Scholar] [CrossRef]
- American Society of Mechanical Engineers (Ed.) Proceedings of the ASME International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems-2018: Heterogeneous Integration: Microsystems with Diverse Functionality: Servers of the Future, IoT, and Edge to Cloud: Structural and Physical Health Monitoring: Power Electronics, Energy Conversion, and Storage: Autonomous, Hybrid, and Electric Vehicles: Presented at ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, 27–30 August 2018, San Francisco, CA, USA; The American Society of Mechanical Engineers: New York, NY, USA, 2019; ISBN 978-0-7918-5192-0. [Google Scholar]
- Shuai, S.; Du, Z.; Ma, B.; Shan, L.; Dogruoz, B.; Agonafer, D. Numerical Investigation of Shape Effect on Microdroplet Evaporation. In Proceedings of the ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, CA, USA, 27–30 August 2018; American Society of Mechanical Engineers: San Francisco, CA, USA, 2018; p. V001T04A010. [Google Scholar]
- Al Miaari, A.; Ali, H.M. Batteries Temperature Prediction and Thermal Management Using Machine Learning: An Overview. Energy Rep. 2023, 10, 2277–2305. [Google Scholar] [CrossRef]
- Abhijith, M.S.; Soman, K.P. Machine Learning Methods for Modeling Nanofluid Flows: A Comprehensive Review with Emphasis on Compact Heat Transfer Devices for Electronic Device Cooling. J. Therm. Anal. Calorim. 2024, 149, 5843–5869. [Google Scholar] [CrossRef]
- Floridi, L.; Chiriatti, M. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds Mach. 2020, 30, 681–694. [Google Scholar] [CrossRef]
- OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Decencière, E.; Cazuguel, G.; Zhang, X.; Thibault, G.; Klein, J.-C.; Meyer, F.; Marcotegui, B.; Quellec, G.; Lamard, M.; Danno, R.; et al. TeleOphta: Machine Learning and Image Processing Methods for Teleophthalmology. IRBM 2013, 34, 196–203. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. A Review on Flood Management Technologies Related to Image Processing and Machine Learning. Autom. Constr. 2021, 132, 103916. [Google Scholar] [CrossRef]
- Lu, R. Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation. arXiv 2025, arXiv:250200563. [Google Scholar]
- Lu, R. Steerable Pyramid Weighted Loss: Multi-Scale Adaptive Weighting for Semantic Segmentation. arXiv 2025, arXiv:250306604. [Google Scholar]
- Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgard, C.; Hoover, A.K.; Isaksen, A.; Nealen, A.; Togelius, J. Procedural Content Generation via Machine Learning (PCGML). IEEE Trans. Games 2018, 10, 257–270. [Google Scholar] [CrossRef]
- Justesen, N.; Bontrager, P.; Togelius, J.; Risi, S. Deep Learning for Video Game Playing. IEEE Trans. Games 2020, 12, 1–20. [Google Scholar] [CrossRef]
- Xu, M.; Maddage, N.C.; Xu, C.; Kankanhalli, M.; Tian, Q. Creating Audio Keywords for Event Detection in Soccer Video. In Proceedings of the 2003 International Conference on Multimedia and Expo. ICME 03. Proceedings (Cat. No.03TH8698), Baltimore, MD, USA, 6–9 July 2003; IEEE: Piscataway, NJ, USA; p. II–281. [Google Scholar]
- Huang, B.; Wang, J. Applications of Physics-Informed Neural Networks in Power Systems—A Review. IEEE Trans. Power Syst. 2023, 38, 572–588. [Google Scholar] [CrossRef]
- Li, A.; Yuen, A.C.Y.; Wang, W.; Chen, T.B.Y.; Lai, C.S.; Yang, W.; Wu, W.; Chan, Q.N.; Kook, S.; Yeoh, G.H. Integration of Computational Fluid Dynamics and Artificial Neural Network for Optimization Design of Battery Thermal Management System. Batteries 2022, 8, 69. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Li, J.; Lopez, S.A. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Acc. Chem. Res. 2022, 55, 1972–1984. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-H.; Zhang, J.; Liang, F.; Temizel, C.; Basri, M.A.; Mesdour, R. Incorporation of Physics into Machine Learning for Production Prediction from Unconventional Reservoirs: A Brief Review of the Gray-Box Approach. SPE Reserv. Eval. Eng. 2021, 24, 847–858. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Y.; Huang, Z.; Liu, Y.; Hu, P.; Luo, X.; Song, Z.; Zhao, W.; Liu, J.; Sun, J.; et al. Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey. arXiv 2024, arXiv:2408.12171. [Google Scholar]
- Arzani, A.; Wang, J.-X.; D’Souza, R.M. Uncovering Near-Wall Blood Flow from Sparse Data with Physics-Informed Neural Networks. Phys. Fluids 2021, 33, 071905. [Google Scholar] [CrossRef]
- Zhou, W.; Miwa, S.; Okamoto, K. Advancing Fluid Dynamics Simulations: A Comprehensive Approach to Optimizing Physics-Informed Neural Networks. Phys. Fluids 2024, 36, 013615. [Google Scholar] [CrossRef]
- Gokhale, G.; Claessens, B.; Develder, C. Physics Informed Neural Networks for Control Oriented Thermal Modeling of Buildings. Appl. Energy 2022, 314, 118852. [Google Scholar] [CrossRef]
- Xu, J.; Wei, H.; Bao, H. Physics-Informed Neural Networks for Studying Heat Transfer in Porous Media. Int. J. Heat Mass Transf. 2023, 217, 124671. [Google Scholar] [CrossRef]
- Li, Z.; Luo, H.; Jiang, Y.; Liu, H.; Xu, L.; Cao, K.; Wu, H.; Gao, P.; Liu, H. Comprehensive Review and Future Prospects on Chip-Scale Thermal Management: Core of Data Center’s Thermal Management. Appl. Therm. Eng. 2024, 251, 123612. [Google Scholar] [CrossRef]
- Xia, Y.; Meng, Y. Physics-Informed Neural Network (PINN) for Solving Frictional Contact Temperature and Inversely Evaluating Relevant Input Parameters. Lubricants 2024, 12, 62. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transf. 2021, 143, 060801. [Google Scholar] [CrossRef]
- Daw, A.; Bu, J.; Wang, S.; Perdikaris, P.; Karpatne, A. Mitigating Propagation Failures in Physics-Informed Neural Networks Using Retain-Resample-Release (R3) Sampling. arXiv 2022, arXiv:2207.02338. [Google Scholar]
- Nabian, M.A.; Gladstone, R.J.; Meidani, H. Efficient Training of Physics-informed Neural Networks via Importance Sampling. Comput. Civ. Infrastruct. Eng. 2021, 36, 962–977. [Google Scholar] [CrossRef]
- Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI 2024, 5, 1534–1557. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Wang, S.; Teng, Y.; Perdikaris, P. Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks. SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [Google Scholar] [CrossRef]
- Yao, J.; Su, C.; Hao, Z.; Liu, S.; Su, H.; Zhu, J. Multiadam: Parameter-Wise Scale-Invariant Optimizer for Multiscale Training of Physics-Informed Neural Networks. In Proceedings of the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 39702–39721. [Google Scholar]
- Wu, C.; Zhu, M.; Tan, Q.; Kartha, Y.; Lu, L. A Comprehensive Study of Non-Adaptive and Residual-Based Adaptive Sampling for Physics-Informed Neural Networks. Comput. Methods Appl. Mech. Eng. 2023, 403, 115671. [Google Scholar] [CrossRef]
- Tang, K.; Wan, X.; Yang, C. DAS-PINNs: A Deep Adaptive Sampling Method for Solving High-Dimensional Partial Differential Equations. J. Comput. Phys. 2023, 476, 111868. [Google Scholar] [CrossRef]
- Yu, T.; Yong, H.; Liu, L.; Wang, H.; Chen, H. MCMC-PINNs: A Modified Markov Chain Monte-Carlo Method for Sampling Collocation Points of PINNs Adaptively. Authorea Preprint 2023. [Google Scholar] [CrossRef]
- Yu, B.; E, W. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Commun. Math. Stat. 2018, 6, 1–12. [Google Scholar]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E. Variational Physics-Informed Neural Networks for Solving Partial Differential Equations. arXiv 2019, arXiv:191200873. [Google Scholar]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E. Hp-VPINNs: Variational Physics-Informed Neural Networks with Domain Decomposition. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547. [Google Scholar] [CrossRef]
- Khodayi-Mehr, R.; Zavlanos, M. VarNet: Variational Neural Networks for the Solution of Partial Differential Equations. In Proceedings of the Learning for Dynamics and Control, PMLR, Berkeley, CA, USA, 10–11 June 2020; pp. 298–307. [Google Scholar]
- Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative Physics-Informed Neural Networks on Discrete Domains for Conservation Laws: Applications to Forward and Inverse Problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Karniadakis, G.E. Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations. Commun. Comput. Phys. 2020, 28, 2002–2041. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, J.; Vinuesa, R.; Kim, S.J. Residual-Based Physics-Informed Transfer Learning: A Hybrid Method for Accelerating Long-Term CFD Simulations via Deep Learning. Int. J. Heat Mass Transf. 2024, 220, 124900. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. (Eds.) Fundamentals of Heat and Mass Transfer, 6th ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-45728-2. [Google Scholar]
- Liaw, S.P.; Yeh, R.H. Fins with Temperature Dependent Surface Heat Flux—I. Single Heat Transfer Mode. Int. J. Heat Mass Transf. 1994, 37, 1509–1515. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Bejan, A. Convection Heat Transfer, 4th ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-0-470-90037-6. [Google Scholar]
- Kaviany, M. Heat Transfer Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-04178-3. [Google Scholar]
- Bernardo, C.; Johann, W.K. Energietechnische Gesellschaft, Ed.; Proceedings/CIPS 2012, 7th International Conference on Integrated Power Electronics Systems: 6–8 March 2012, Nuremberg, Germany; Incl. CD-ROM; ETG-Fachbericht; VDE-Verl: Berlin, Germany, 2012; ISBN 978-3-8007-3414-6. [Google Scholar]
- Ohadi, M.M.; Dessiatoun, S.V.; Choo, K.; Pecht, M.; Lawler, J.V. A Comparison Analysis of Air, Liquid, and Two-Phase Cooling of Data Centers. In Proceedings of the 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 18–22 March 2012; IEEE: Piscataway, NJ, USA; pp. 58–63. [Google Scholar]
- Gong, Y.; Zhou, F.; Ma, G.; Liu, S. Advancements on Mechanically Driven Two-Phase Cooling Loop Systems for Data Center Free Cooling. Int. J. Refrig. 2022, 138, 84–96. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, X.; Pan, Y.; Kosonen, R.; Cai, H.; Gao, Y.; Wang, Y. Phase Change Cooling in Data Centers: A Review. Energy Build. 2021, 236, 110764. [Google Scholar] [CrossRef]
- Abro, G.E.M.; Zulkifli, S.A.B.M.; Kumar, K.; El Ouanjli, N.; Asirvadam, V.S.; Mossa, M.A. Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles. Energies 2023, 16, 2925. [Google Scholar] [CrossRef]
- Zhang, Y.; Udrea, F.; Wang, H. Multidimensional Device Architectures for Efficient Power Electronics. Nat. Electron. 2022, 5, 723–734. [Google Scholar] [CrossRef]
- Shan, L.; Bu, C.; Su, Y.; Wu, J.; Wang, Y.; Shen, L.; Xie, J. Towards Feasible Thermal Management Design of Electronic Control Module for Variable Frequency Air Conditioner Function in Extremely High Ambient Temperatures. Electronics 2025, 14, 1595. [Google Scholar] [CrossRef]
- Chen, D.; Chui, C.-K.; Lee, P.S. Adaptive Physically Consistent Neural Networks for Data Center Thermal Dynamics Modeling. Appl. Energy 2025, 377, 124637. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, Z.-H.; Gong, L.; Xu, M.-H.; Huang, Z.-Q. A Novel Thermal Management Scheme for 3D-IC Chips with Multi-Cores and High Power Density. Appl. Therm. Eng. 2020, 168, 114832. [Google Scholar] [CrossRef]
- Sadiqbatcha, S.I.; Zhang, J.; Amrouch, H.; Tan, S.X.-D. Real-Time Full-Chip Thermal Tracking: A Post-Silicon, Machine Learning Perspective. IEEE Trans. Comput. 2021, 71, 1411–1424. [Google Scholar] [CrossRef]
- Chen, L.; Jin, W.; Tan, S.X.-D. Fast Thermal Analysis for Chiplet Design Based on Graph Convolution Networks. In Proceedings of the 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 17 January 2022; IEEE: Piscataway, NJ, USA; pp. 485–492. [Google Scholar]
- Liu, Z.; Li, Y.; Hu, J.; Yu, X.; Shiau, S.; Ai, X.; Zeng, Z.; Zhang, Z. DeepOHeat: Operator Learning-Based Ultra-Fast Thermal Simulation in 3D-IC Design. In Proceedings of the 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 9 July 2023; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Jin, P.; Meng, S.; Lu, L. MIONet: Learning Multiple-Input Operators via Tensor Product. SIAM J. Sci. Comput. 2022, 44, A3490–A3514. [Google Scholar] [CrossRef]
- Chen, L.; Lu, J.; Jin, W.; Tan, S.X.-D. Fast Full-Chip Parametric Thermal Analysis Based on Enhanced Physics Enforced Neural Networks. In Proceedings of the 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, USA, 28 October 2023; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar]
- Garimella, S.V.; Persoons, T.; Weibel, J.A.; Gektin, V. Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1191–1205. [Google Scholar] [CrossRef]
- Asgari, S.; Hu, X.; Tsuk, M.; Kaushik, S. Application of POD plus LTI ROM to Battery Thermal Modeling: SISO Case. SAE Int. J. Commer. Veh. 2014, 7, 278–285. [Google Scholar] [CrossRef]
- Hu, X.; Asgari, S.; Lin, S.; Stanton, S.; Lian, W. A Linear Parameter-Varying Model for HEV/EV Battery Thermal Modeling. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; IEEE: Piscataway, NJ, USA; pp. 1643–1649. [Google Scholar]
- Hu, X.; Asgari, S.; Yavuz, I.; Stanton, S.; Hsu, C.-C.; Shi, Z.; Wang, B.; Chu, H.-K. A Transient Reduced Order Model for Battery Thermal Management Based on Singular Value Decomposition. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA; pp. 3971–3976. [Google Scholar]
- Yang, Y.; Wang, Z.; Liao, Y.; Kong, W.; Shi, X.; Hu, R.; Yao, Y. A Parameterized Thermal Simulation Method Based on Physics-Informed Neural Networks for Fast Power Module Thermal Design. IEEE Trans. Power Electron. 2025, 40, 9200–9210. [Google Scholar] [CrossRef]
- Hamid Elsheikh, M.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Haji Hassan, M.; Ali Bashir, M.B.; Mohamad, M. A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Chen, L.; Jin, W.; Zhang, J.; Tan, S.X.-D. Thermoelectric Cooler Modeling and Optimization via Surrogate Modeling Using Implicit Physics-Constrained Neural Networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 4090–4101. [Google Scholar] [CrossRef]
- Farrag, A.; Kataoka, J.; Yoon, S.W.; Won, D.; Jin, Y. SRP-PINN: A Physics-Informed Neural Network Model for Simulating Thermal Profile of Soldering Reflow Process. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 1098–1105. [Google Scholar] [CrossRef]
- Liu, H.; Wen, M.; Yang, H.; Yue, Z.; Yao, M. A Review of Thermal Management System and Control Strategy for Automotive Engines. J. Energy Eng. 2021, 147, 03121001. [Google Scholar] [CrossRef]
- Du, D.; Darkwa, J.; Kokogiannakis, G. Thermal Management Systems for Photovoltaics (PV) Installations: A Critical Review. Sol. Energy 2013, 97, 238–254. [Google Scholar] [CrossRef]
- Nadjahi, C.; Louahlia, H.; Lemasson, S. A Review of Thermal Management and Innovative Cooling Strategies for Data Center. Sustain. Comput. Inform. Syst. 2018, 19, 14–28. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Liu, J.; Niu, X. Recent Advancements on Thermal Management and Evaluation for Data Centers. Appl. Therm. Eng. 2018, 142, 215–231. [Google Scholar] [CrossRef]
- Pogorelskiy, S.; Kocsis, I. BIM and Computational Fluid Dynamics Analysis for Thermal Management Improvement in Data Centres. Buildings 2023, 13, 2636. [Google Scholar] [CrossRef]
- Schmidt, R.R.; Cruz, E.E.; Iyengar, M. Challenges of Data Center Thermal Management. IBM J. Res. Dev. 2005, 49, 709–723. [Google Scholar] [CrossRef]
- Tanaka, H.; Nagai, H. Thermal Surrogate Model for Spacecraft Systems Using Physics-Informed Machine Learning with POD Data Reduction. Int. J. Heat Mass Transf. 2023, 213, 124336. [Google Scholar] [CrossRef]
- Zhang, X.; Tu, C.; Yan, Y. Physics-Informed Neural Network Simulation of Conjugate Heat Transfer in Manifold Microchannel Heat Sinks for High-Power IGBT Cooling. Int. Commun. Heat Mass Transf. 2024, 159, 108036. [Google Scholar] [CrossRef]
- Jordan, S.M.; Schreiber, C.O.; Parhizi, M.; Shah, K. A New Multiphysics Modeling Framework to Simulate Coupled Electrochemical-Thermal-Electrical Phenomena in Li-Ion Battery Packs. Appl. Energy 2024, 360, 122746. [Google Scholar] [CrossRef]
- Grazioli, D.; Magri, M.; Salvadori, A. Computational Modeling of Li-Ion Batteries. Comput. Mech. 2016, 58, 889–909. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-Informed Neural Network for Lithium-Ion Battery Degradation Stable Modeling and Prognosis. Nat. Commun. 2024, 15, 4332. [Google Scholar] [CrossRef]
- Wen, P.; Ye, Z.-S.; Li, Y.; Chen, S.; Xie, P.; Zhao, S. Physics-Informed Neural Networks for Prognostics and Health Management of Lithium-Ion Batteries. IEEE Trans. Intell. Veh. 2024, 9, 2276–2289. [Google Scholar] [CrossRef]
- Navidi, S.; Thelen, A.; Li, T.; Hu, C. Physics-Informed Machine Learning for Battery Degradation Diagnostics: A Comparison of State-of-the-Art Methods. Energy Storage Mater. 2024, 68, 103343. [Google Scholar] [CrossRef]
- Finegan, D.P.; Zhu, J.; Feng, X.; Keyser, M.; Ulmefors, M.; Li, W.; Bazant, M.Z.; Cooper, S.J. The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety. Joule 2021, 5, 316–329. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Kim, S.W.; Kwak, E.; Kim, J.-H.; Oh, K.-Y.; Lee, S. Modeling and Prediction of Lithium-Ion Battery Thermal Runaway via Multiphysics-Informed Neural Network. J. Energy Storage 2023, 60, 106654. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, C.; Wang, Y.; Xu, P.; Ju, C.; Shi, J.; Yang, G.; Chu, J. Temperature State Prediction for Lithium-Ion Batteries Based on Improved Physics Informed Neural Networks. J. Energy Storage 2023, 73, 108863. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Wei, W.; Wang, S. Design of the Structure of Battery Pack in Parallel Air-Cooled Battery Thermal Management System for Cooling Efficiency Improvement. Int. J. Heat Mass Transf. 2019, 132, 309–321. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal Issues about Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Gümüşsu, E.; Ekici, Ö.; Köksal, M. 3-D CFD Modeling and Experimental Testing of Thermal Behavior of a Li-Ion Battery. Appl. Therm. Eng. 2017, 120, 484–495. [Google Scholar] [CrossRef]
- Esmaeili, J.; Jannesari, H. Developing Heat Source Term Including Heat Generation at Rest Condition for Lithium-Ion Battery Pack by up Scaling Information from Cell Scale. Energy Convers. Manag. 2017, 139, 194–205. [Google Scholar] [CrossRef]
- Deng, H.-P.; He, Y.-B.; Wang, B.-C.; Li, H.-X. Physics-Dominated Neural Network for Spatiotemporal Modeling of Battery Thermal Process. IEEE Trans. Ind. Inform. 2024, 20, 452–460. [Google Scholar] [CrossRef]
- Cho, G.; Zhu, D.; Campbell, J.J.; Wang, M. An LSTM-PINN Hybrid Method to Estimate Lithium-Ion Battery Pack Temperature. IEEE Access 2022, 10, 100594–100604. [Google Scholar] [CrossRef]
- Shen, K.; Xu, W.; Lai, X.; Li, D.; Meng, X.; Zheng, Y.; Feng, X. Physics-Informed Machine Learning Estimation of the Temperature of Large-Format Lithium-Ion Batteries under Various Operating Conditions. Appl. Therm. Eng. 2025, 269, 126200. [Google Scholar] [CrossRef]
Category | Key Methods | Highlights |
---|---|---|
Loss Balancing | MultiAdam [43], Gradient Reweight [42] | Adaptive optimizer, rebalancing loss terms |
Sampling Strategies | Importance sampling [39], RAD [42], DAS-PINNs [45], MCMC-PINNs [46] | Adaptive and probabilistic point selection |
Variational Form | Deep Ritz [47], VPINNs [48,49], VarNet [50] | Weak form enforcement, lower derivative order |
Domain Decomposition | cPINNs [51], XPINNs [52] | Local networks, interface stitching |
Scale | Key Methods | Highlights |
---|---|---|
Chip | DeeOHeat [71], ThermPINN [72] | Temperature-dependent properties, DeepONet, variables separation |
Board | PINN with SiC design exploration [77], IPCNN [78], SRP-PINN [80] | Design space exploration, Multiphysics |
System | A-PCNN [66], PIML [87], PINN with MMC and IGBTs [88] | CAD complexities, data size |
Scale | Key Methods | Highlights |
---|---|---|
Cell | PINN with electric–thermal mechanism [103], BINN [98], MPINN [97] | Electrochemical–thermal multiphysics, real-time TR prediction |
Pack | LSTM-PINN [104] | Data size, temperature uniformity, cell arrangement |
System | PINN-LSTM [105] | Large format, wide operational range, 1D simplification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Lu, R. Physics-Informed Neural Networks for Advanced Thermal Management in Electronics and Battery Systems: A Review of Recent Developments and Future Prospects. Batteries 2025, 11, 204. https://doi.org/10.3390/batteries11060204
Du Z, Lu R. Physics-Informed Neural Networks for Advanced Thermal Management in Electronics and Battery Systems: A Review of Recent Developments and Future Prospects. Batteries. 2025; 11(6):204. https://doi.org/10.3390/batteries11060204
Chicago/Turabian StyleDu, Zichen, and Renhao Lu. 2025. "Physics-Informed Neural Networks for Advanced Thermal Management in Electronics and Battery Systems: A Review of Recent Developments and Future Prospects" Batteries 11, no. 6: 204. https://doi.org/10.3390/batteries11060204
APA StyleDu, Z., & Lu, R. (2025). Physics-Informed Neural Networks for Advanced Thermal Management in Electronics and Battery Systems: A Review of Recent Developments and Future Prospects. Batteries, 11(6), 204. https://doi.org/10.3390/batteries11060204