Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL)
Abstract
1. Introduction
2. Methods
2.1. Battery Samples
2.2. Gas Volume and Composition Determination
2.3. Cell Abuse Method
2.4. Ignition Experiments
3. Results and Discussion
3.1. Gas Analysis
3.2. LEL Calculation of Vent Gases
3.3. Overview of Ignition Experiment Results
3.4. Near Immediate Initiation of Ignition Source Experiments
3.5. Delayed Ignition Experiments
4. Conclusions
Recommendations for Future Work
- Further research is required to understand the concentrations of flammable gases in different layers within a volume as a cell, module, or battery pack fails, and to ascertain the thickness and concentration of any stratified layer and understand the persistence of the layers as cooling occurs.
- Further research is required to understand the reactivity of the vent gases directly from a failed cell, with the resultant heat and contamination with vapourised electrolytes, aerosols, and particles, and to determine if the gases have the propensity for sonic combustion and possible deflagration to detonation transition.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LFP | Lithium iron phosphate |
| SoC | State of charge |
| LIB | Lithium-ion batteries |
| BESS | Battery energy storage system |
| GC-MS | Gas chromatography–mass spectrometry |
| FTIR | Fourier transform infrared spectroscopy |
| MS | Mass spectrometry |
| LEL | Lower explosive limit |
References
- Nordelöf, A.; Messagie, M.; Tillman, A.-M.; Ljunggren Söderman, M.; Van Mierlo, J. Environmental impacts of hybrid plug-in hybrid battery electric vehicles—What can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef]
- Ballinger, B.; Stringer, M.; Schmeda-Lopez, D.R.; Kefford, B.; Parkinson, B.; Greig, C.; Smart, S. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 2019, 255, 113844. [Google Scholar] [CrossRef]
- Abulelsamid, S. Lithium iron phosphate set to be the next big thing in ev batteries. In Forbes; Forbes Media: Jersey City, NJ, USA, 2023; Available online: https://www.forbes.com/sites/samabuelsamid/2023/08/16/lithium-iron-phosphate-set-to-be-the-next-big-thing-in-ev-batteries/ (accessed on 1 December 2024).
- Crownhart, C. What’s next for batteries. In MIT Technology Review; Massachusetts Institute of Technology: Boston, MA, USA, 2023; Available online: https://www.technologyreview.com/2023/01/04/1066141/whats-next-for-batteries/ (accessed on 1 December 2024).
- Jaswani, P. Battery Markets in Construction, Agriculture & Mining Machines 2024–2034. Available online: https://www.idtechex.com/en/research-report/battery-markets-in-construction-agriculture-and-mining-machines-2024-2034/1008 (accessed on 2 December 2024).
- Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D.; Howard, G.E.; Read, E.; Williams, R.C.E. Experimental study of three commercially available 18650 lithium ion batteries using multiple abuse methods. J. Energy Storage 2023, 65, 107293. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Sun, S.; Zhao, G.; Yu, X.; Hu, Y.; Mei, W.; Jin, K.; Wang, Q. Understanding the influence of the confined cabinet on thermal runaway of large format batteries with different chemistries: A comparison and safety assessment study. J. Energy Storage 2023, 74, 109337. [Google Scholar] [CrossRef]
- Bugryniec, P.J.; Davidson, J.N.; Cumming, D.J.; Brown, S.F. Pursuing safer batteries: Thermal abuse of lifepo4 cells. J. Power Sources 2019, 414, 557–568. [Google Scholar] [CrossRef]
- Liu, P.; Liu, C.; Yang, K.; Zhang, M.; Gao, F.; Mao, B.; Li, H.; Duan, Q.; Wang, Q. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating. J. Energy Storage 2020, 31, 101714. [Google Scholar] [CrossRef]
- Wang, S.; Song, L.; Li, C.; Tian, J.; Jin, K.; Duan, Q.; Wang, Q. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 ah lithium iron phosphate battery. J. Energy Storage 2023, 74, 109368. [Google Scholar] [CrossRef]
- Rappsilber, T.; Yusfi, N.; Krüger, S.; Hahn, S.-K.; Fellinger, T.-P.; Krug von Nidda, J.; Tschirschwitz, R. Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries. J. Energy Storage 2023, 60, 106579. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Wang, Q.; Duan, Q.; Li, Y.; Li, L.; Wang, Q. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes. Int. J. Heat Mass Transf. 2021, 172, 121077. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.; Zhou, X.; Li, L.; Ju, X.; Yang, L. Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse. Renew. Energy 2024, 220, 119674. [Google Scholar] [CrossRef]
- NFPA. NFPA 69 Standard on Explosion Prevention Systems; NFPA: Quincy, MA, USA, 2024. [Google Scholar]
- Zabetakis, M.G. Fire Safety; Safety manual; no. 13. United States Department of Labor, Mine Safety and Health Administration; National Mine Health and Safety Academy: Washington, DC, USA, 1986.
- BS EN 60079-29-2:2015; Explosive Atmospheres-Gas Detectors. Selection, Installation, Use and Maintenance of Detectors for Flammable Gases and Oxygen. BSI: Hong Kong, China, 2015.
- Baird, A.R.; Archibald, E.J.; Marr, K.C.; Ezekoye, O.A. Explosion hazards from lithium-ion battery vent gas. J. Power Sources 2020, 446, 227257. [Google Scholar] [CrossRef]
- Bugryniec, P.J.; Resendiz, E.G.; Nwophoke, S.M.; Khanna, S.; James, C.; Brown, S.F. Review of gas emissions from lithium-ion battery thermal runaway failure—Considering toxic and flammable compounds. J. Energy Storage 2024, 87, 111288. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; de Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Howard, G.E.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Mellor, J.W.; Reeve, P.A.P. Comprehensive study of the gas volume and composition produced by different 3–230 ah lithium iron phosphate (lfp) cells failed using external heat, overcharge and nail penetration under air and inert atmospheres. Batteries 2025, 11, 267. [Google Scholar] [CrossRef]
- Jia, Z.; Min, Y.; Qin, P.; Mei, W.; Meng, X.; Jin, K.; Sun, J.; Wang, Q. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries. J. Energy Chem. 2024, 89, 195–207. [Google Scholar] [CrossRef]
- Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D.; Howard, G.; Read, E.; Williams, R.C.E. Comprehensive gas analysis of a 21700 li(ni0.8co0.1mn0.1o2) cell using mass spectrometry. J. Power Sources 2022, 539, 231585. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, S.; Qin, P.; Li, C.; Song, L.; Cheng, Z.; Jin, K.; Sun, J.; Wang, Q. Comparative investigation of the thermal runaway and gas venting behaviors of large-format lifepo4 batteries caused by overcharging and overheating. J. Energy Storage 2023, 61, 106791. [Google Scholar] [CrossRef]
- Kang, R.; Jia, C.; Zhao, J.; Zhao, L.; Zhang, J. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge. J. Energy Storage 2024, 87, 111523. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, L.; Jia Zz Cheng, Z.; Min, Y.; Mei, W.; Qin, P.; Wang, Q. Experimental study on the internal pressure evolution of large-format lifepo4 battery during thermal runaway. J. Energy Storage 2024, 102, 114196. [Google Scholar] [CrossRef]
- Mao, B.; Liu, C.; Yang, K.; Li, S.; Liu, P.; Zhang, M.; Meng, X.; Gao, F.; Duan, Q.; Wang, Q.; et al. Thermal runaway and fire behaviors of a 300 ah lithium ion battery with lifepo4 as cathode. Renew. Sust. Energy Rev. 2021, 139, 110717. [Google Scholar] [CrossRef]
- Ogunfuye, S.; Sezer, H.; Said, A.O.; Simeoni, A.; Akkerman, V.Y. An analysis of gas-induced explosions in vented enclosures in lithium-ion batteries. J. Energy Storage 2022, 51, 104438. [Google Scholar] [CrossRef]
- Qian, F.; Wang, H.; Li, M.; Li, C.; Shen, H.; Wang, J.; Li, Y.; Ouyang, M. Thermal runaway vent gases from high-capacity energy storage lifepo4 lithium iron. Energies 2023, 16, 3485. [Google Scholar] [CrossRef]
- Qin, P.; Jia, Z.; Wu, J.; Jin, K.; Duan, Q.; Jiang, L.; Sun, J.; Ding, J.; Shi, C.; Wang, Q. The thermal runaway analysis on lifepo4 electrical energy storage packs with different venting areas and void volumes. Appl. Energy 2022, 313, 118767. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Li, M.; Li, C.; Zhang, Y.; Li, Y.; Yang, X.; Feng, X.; Ouyang, M. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different lfp and ncm cathode materials under inert atmosphere. Electronics 2023, 12, 1603. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Chen, D.; Qin, Y.; Xu, L.; Li, Y.; Wang, Q.; Feng, X.; Wang, H. Explosion characteristics of two-phase ejecta from large-capacity lithium iron phosphate batteries. eTransportation 2024, 22, 100377. [Google Scholar] [CrossRef]
- Wang, S.-L.; Gong, X.; Liu, L.-N.; Li, Y.-T.; Zhang, C.-Y.; Xu, L.-J.; Feng, X.-N.; Wang, H.-B. Numerical analysis of explosion characteristics of vent gas from 18650 lifepo 4 batteries with different states of charge. J. Energy Chem. 2024, 30, 3. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, L. Experimental study on thermal runaway and venting gas explosion hazards in prismatic lithium-ion batteries at different states of charge. Process Saf. Environ. Prot. 2025, 198, 107118. [Google Scholar] [CrossRef]
- Yang, M.; Rong, M.; Ye, Y.; Yang, A.; Chu, J.; Yuan, H.; Wang, X. Comprehensive analysis of gas production for commercial lifepo4 batteries during overcharge-thermal runaway. J. Energy Storage 2023, 72, 108323. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, K.; Zhang, Q.; Chen, H.; Fan, M.; Geng, M.; Wei, B.; Xie, B. Simulation of dispersion and explosion characteristics of lifepo4 lithium-ion battery thermal runaway gases. ACS Omega 2024, 9, 17036–17044. [Google Scholar] [CrossRef]
- Howard, G.E.; Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D. Comprehensive study of the gas volume and composition generated by 5 ah nickel manganese cobalt oxide (nmc) li-ion pouch cells through different failure mechanisms at varying states of charge. Batteries 2025, 11, 197. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Wang, J.; Tong, X.; Yan, W. Lower explosion limit of the vented gases from li-ion batteries thermal runaway in high temperature condition. J. Loss Prev. Process Ind. 2020, 63, 103992. [Google Scholar] [CrossRef]
- Li, W.; Rao, S.; Xiao, Y.; Gao, Z.; Chen, Y.; Wang, H.; Ouyang, M. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway. iScience 2021, 24, 102401. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, D.; Chang, C.; Zhang, J.; Ouyang, D.; Qian, X. Charging rate effect on overcharge-induced thermal runaway characteristics gas venting behaviors for commercial lithium iron phosphate batteries. J. Clean. Prod. 2024, 434, 139992. [Google Scholar] [CrossRef]
- Wei, G.; Huang, R.; Zhang, G.; Jiang, B.; Zhu, J.; Guo, Y.; Han, G.; Wei, X.; Dai, H. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards. Appl. Energy 2023, 349, 121651. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Li, M.; Li, Y.; Li, C.; Zhang, Y.; Chen, S.; Shen, H.; Qian, F.; Feng, X.; et al. Experimental study on thermal runaway behavior of lithium-ion battery and analysis of combustible limit of gas production. Batteries 2022, 8, 250. [Google Scholar] [CrossRef]
- Zabetakis, M.G. Flammability Characteristics of Combustible Gases and Vapors. Available online: https://www.osti.gov/biblio/7328370 (accessed on 12 December 2024).
- Henriksen, M.; Vaagsaether, K.; Lundberg, J.; Forseth, S.; Bjerketvedt, D. Explosion characteristics for li-ion battery electrolytes at elevated temperatures. J. Hazard. Mater. 2019, 371, 1–7. [Google Scholar] [CrossRef]
- Liang, Z.; Gardner, L.; Clouthier, T.; MacCoy, R. Hydrogen deflagrations in stratified flat layers in the large-scale vented combustion test facility. Int. J. Hydrogen Energy 2021, 46, 12533–12544. [Google Scholar] [CrossRef]
- Reeve, P.A.; Buston, J.E.; Gill, J.; Goddard, S.L.; Howard, G.E.; Mellor, J.W. Failure gas analysis of lithium–nickel–cobalt–aluminium oxide cells from different manufacturers. RSC Adv. 2025, 15, 5084–5095. [Google Scholar] [CrossRef]
- Coward, H.F.; Jones, G.W. Limits of Flammability of Gases and Vapours; US Government Printing Office: Washington, DC, USA, 1952.
- Rui, S.; Wang, C.; Luo, X.; Jing, R.; Li, Q. External explosions of vented hydrogen-air deflagrations in a cubic vessel. Fuel 2021, 301, 121023. [Google Scholar] [CrossRef]
- Fakandu, B.M.; Andrews, G.E.; Phylaktou, H.N. Vent burst pressure effects on vented gas explosion reduced pressure. J. Loss Prev. Process Ind. 2015, 36, 429–438. [Google Scholar] [CrossRef]
- Tang, Z.; Li, J.; Guo, J.; Zhang, S.; Duan, Z. Effect of vent size on explosion overpressure and flame behavior during vented hydrogen–air mixture deflagrations. Nucl. Eng. Des. 2020, 361, 110578. [Google Scholar] [CrossRef]
- Gill, J.; Atkinson, G.; Cowpe, E.; Phylaktou, H.; Andrews, G. Experimental investigation of potential confined ignition sources for vapour cloud explosions. Process Saf. Environ. Prot. 2020, 135, 187–206. [Google Scholar] [CrossRef]











| Cell ID | Format | Nominal Capacity (Ah) | Weight (g) | Dimensions (mm) | Condition of Cells |
|---|---|---|---|---|---|
| A | Prismatic | 22 | 636 | 145 × 130 × 15 | New |
| B | Prismatic | 32 | 745 | 150 × 90 × 25 | New |
| C | Prismatic | 50 | 1404 | 135 × 180 × 30 | New |
| D | Prismatic | 105 | 1987 | 130 × 195 × 35 | New |
| Cell Type | Atmosphere | SoC at Failure (%) | Gas Vol. (L) | H2 (%) | CO (%) | CH4 (%) | CO2 (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| A | Argon | 129 | 19.2 | 47.6 | 12 | 4.5 | 16.4 | 1.5 | 12.1 | 3.5 | 2.3 |
| B | Argon | 129 | 22.2 | 48.7 | 11 | 4.3 | 12.6 | 1.7 | 10 | 6.4 | 5.3 |
| C | Argon | 149 | 45.5 | 45.3 | 6 | 4.8 | 14 | 3.8 | 9.7 | 8.4 | 8 |
| D | Argon | 131 | 77.8 | 48 | 13 | 5 | 17 | 3 | 9 | 3 | 2 |
| Cell Type ID | Stated Capacity (Ah) | Gas Vol. (L) | Calc. LEL of Vent Gas Mixture (vol%) | Max. Fraction of LEL in Cubic Rig |
|---|---|---|---|---|
| A | 22 | 19.2 | 5.23 | 0.21 |
| B | 32 | 22.2 | 4.67 | 0.27 |
| C | 50 | 45.5 | 4.29 | 0.6 |
| D | 105 | 77.8 | 5.44 | 0.79 |
| Cell ID | Stated Capacity (Ah) | When Ignition Sources Activated | Ignition Occurred |
|---|---|---|---|
| D1 | 105 | During venting | Yes |
| D2 | 105 | During venting | Yes |
| C1 | 50 | During venting | No |
| C2 | 50 | During venting | No |
| B1 | 32 | During venting | No |
| D3 | 105 | During cooling | Yes |
| D4 | 105 | During cooling | Yes |
| D5 | 105 | During cooling | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, J.; Buston, J.E.H.; Howard, G.E.; Goddard, S.L.; Reeve, P.A.P.; Mellor, J.W. Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL). Batteries 2025, 11, 352. https://doi.org/10.3390/batteries11100352
Gill J, Buston JEH, Howard GE, Goddard SL, Reeve PAP, Mellor JW. Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL). Batteries. 2025; 11(10):352. https://doi.org/10.3390/batteries11100352
Chicago/Turabian StyleGill, Jason, Jonathan E. H. Buston, Gemma E. Howard, Steven L. Goddard, Philip A. P. Reeve, and Jack W. Mellor. 2025. "Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL)" Batteries 11, no. 10: 352. https://doi.org/10.3390/batteries11100352
APA StyleGill, J., Buston, J. E. H., Howard, G. E., Goddard, S. L., Reeve, P. A. P., & Mellor, J. W. (2025). Experimental Investigations into the Ignitability of Real Lithium Iron Phosphate (LFP) Battery Vent Gas at Concentrations Below the Theoretical Lower Explosive Limit (LEL). Batteries, 11(10), 352. https://doi.org/10.3390/batteries11100352

