Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium
Abstract
:1. Introduction
1.1. Historical Evolution and Perspective
1.1.1. LIBs
1.1.2. SIBs
1.2. Market
2. Supply Chain and Material Demand
2.1. Chemistry Evolution
2.2. Resources and Supplies
2.3. Comparison of Material Demand for LIBs and SIBs
3. Commercialization for Practical Applications
3.1. Scale-Up and Infrastructure
3.2. Cost
3.2.1. Materials Costs
3.2.2. Battery Components
3.2.3. Indirect Parameters
3.3. Low-Temperature Performance
3.4. Fast Charging
3.5. Recyclability
4. Challenges and Issues
4.1. Energy Density and Capacity
4.2. Environmental Impact
4.3. Sustainability
4.4. Safety
5. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Batteries and Secure Energy Transitions; International Energy Agency (IEA): Paris, France, 2024. [Google Scholar]
- Sodium-Ion Battery Market. Available online: https://www.marketsandmarkets.com/Market-Reports/sodium-ion-battery-market-207269067.html (accessed on 3 April 2024).
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Lewis, G.N.; Keyes, F.G. The potential of the lithium electrode. J. Am. Chem. Soc. 1913, 35, 340–344. [Google Scholar] [CrossRef]
- Selim, R.G.; Hill, K.R.; Rao, M.L.B. Research and Development of a High Capacity, Nonaqueous Secondary Battery. PR Mallory & Company, Laboratory for Physical Science: Indianapolis, IN, USA, 1966. [Google Scholar]
- Vissers, D.R.; Tomczuk, Z.; Steunenberg, R.K. A Preliminary Investigation of High Temperature Lithium/Iron Sulfide Secondary Cells. J. Electrochem. Soc. 1974, 121, 665. [Google Scholar] [CrossRef]
- Gay, E.C.; Vissers, D.R.; Martino, F.J.; Anderson, K.E. Performance characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 1976, 123, 1591–1596. [Google Scholar] [CrossRef]
- Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127. [Google Scholar] [CrossRef]
- Evarts, E.C. Lithium batteries: To the limits of lithium. Nature 2015, 526, S93–S95. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Wei, S.; Taylor, M.; Chen, J.; Reports, J.K.-E. Hybrid Anode Materials for Rechargeable Batteries—A Review of Sn/TiO2 Based Nanocomposites. Energy Rep. 2021, 7, 2836. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Gaines, L.; Cuenca, R. Costs of Lithiumion Batteries for Vehicles. Technical report by Argonne National Laboratory; The US Department of Energy (DOE): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Bates, J. Thin-film lithium and lithium-ion batteries. Solid. State Ion. 2000, 135, 33–45. [Google Scholar] [CrossRef]
- Lithium-Ion Battery Inventor Introduces New Technology for Fast-Charging, Noncombustible Batteries. Available online: https://news.utexas.edu/2017/02/28/goodenough-introduces-new-battery-technology/ (accessed on 3 February 2017).
- Paolella, A.; Faure, C.; Bertoni, G.; Marras, S.; Guerfi, A.; Darwiche, A.; Hovington, P.; Commarieu, B.; Wang, Z.; Prato, M.; et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat. Commun. 2017, 8, 14643. [Google Scholar] [CrossRef]
- Hydro-Québec Researcher Karim Zaghib Wins the Lionel-Boulet Award. Available online: https://news.hydroquebec.com/en/press-releases/1549/hydro-quebec-researcher-karim-zaghib-wins-the-lionel-boulet-award/ (accessed on 3 October 2019).
- Bajolle, H.; Lagadic, M.; Louvet, N. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Res. Soc. Sci. 2022, 93, 102850. [Google Scholar] [CrossRef]
- Newman, G.H.; Klemann, L.P. Ambient temperature cycling of an Na-TiS2 cell. J. Electrochem. Soc. 1980, 127, 2097–2099. [Google Scholar] [CrossRef]
- Sayahpour, B.; Hirsh, H.; Parab, S.; Nguyen, L.H.B.; Zhang, M.; Meng, Y.S. Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy Sustain. 2022, 9, 183–197. [Google Scholar] [CrossRef]
- Rudola, A.; Rennie, A.J.; Heap, R.; Meysami, S.S.; Lowbridge, A.; Mazzali, F.; Sayers, R.; Wright, C.J.; Barker, J. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 2021, 9, 8279–8302. [Google Scholar] [CrossRef]
- Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 2018, 18, 459–479. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271. [Google Scholar] [CrossRef]
- CATL: CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-Ion Batteries. Available online: https://www.catl.com/en/news/665.html (accessed on 14 May 2024).
- IEA. Global EV Outlook 2023; International Energy Agency (IEA): Paris, France, 2023. [Google Scholar]
- Jones, N. The new car batteries that could power the electric vehicle revolution. Nature 2024, 626, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Häringer, M.; Schmidt, M.; Schneider, L.; Peters, J.F.; Bauer, W.; Binder, J.R.; Weil, M. Prospective sustainability screening of sodium-ion battery cathode materials. Adv. Energy Mater. 2022, 12, 2202636. [Google Scholar] [CrossRef]
- Zhang, S.; Steubing, B.; Karlsson Potter, H.; Hansson, P.A.; Nordberg, Å. Future climate impacts of sodium-ion batteries. Resour. Conserv. Recycl. 2024, 202, 107362. [Google Scholar] [CrossRef]
- ScienceDaily. Sodium-Ion Batteries Are a Valid Alternative to Lithium-Ion Batteries; ScienceDaily: Rockville, MD, USA, 2020. [Google Scholar]
- Patrick Chen, Tamara Grünewald, Jesse Noffsinger, Eivind Samseth: Global Energy Perspective 2023: Power Outlook. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-power-outlook#/ (accessed on 10 May 2024).
- IEA. Global Critical Minerals Outlook 2024; International Energy Agency (IEA): Paris, France, 2024. [Google Scholar]
- Nekahi, A.; Kumar, M.R.A.; Li, X.; Deng, S.; Zaghib, K. Sustainable LiFePO4 and LiMnxFe1-xPO4 (x=0.1–1) cathode materials for lithium-ion batteries: A systematic review from mine to chassis. Mater. Sci. Eng. R. Rep. 2024, 159, 100797. [Google Scholar] [CrossRef]
- Sun, Y.-K. A Rising Tide of Co-Free Chemistries for Li-Ion Batteries. ACS Energy Lett. 2022, 7, 1774–1775. [Google Scholar] [CrossRef]
- Yang, L.; Deng, W.; Xu, W.; Tian, Y.; Wang, A.; Wang, B.; Zou, G.; Hou, H.; Deng, W.; Ji, X. Olivine LiMnxFe1−xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances. J. Mater. Chem. A 2021, 9, 14214–14232. [Google Scholar] [CrossRef]
- Trends in Batteries, Battery Demand for EVs Continues to Rise. 2023. Available online: https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteries (accessed on 3 April 2024).
- King, A.; Pass the Salt Please. Power Lies within. 2024. Available online: https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/pass-salt-please-power-lies-within (accessed on 3 April 2024).
- Nagmani; Pahari, D.; Verma, P.; Puravankara, S. Are Na-ion batteries nearing the energy storage tipping point?–Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage. J. Energy Storage 2022, 56, 105961. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering 2023, 24, 172–183. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Peters, J.; Peña Cruz, A.; Weil, M. Exploring the economic potential of sodium-ion batteries. Batteries 2019, 5, 10. [Google Scholar] [CrossRef]
- Reid, M. Sodium-Ion Batteries: Disrupt and Conquer? Wood Mackenzie: Edinburgh, UK, 2023. [Google Scholar]
- Abraham, K.M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A.Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. Challenges of today for Na-based batteries of the future: From materials to cell metrics. J. Power Sources 2021, 482, 228872. [Google Scholar] [CrossRef]
- Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M.I. Prospects in anode materials for sodium ion batteries-A review. Renew. Sustain. Energy Rev. 2020, 119, 109549. [Google Scholar] [CrossRef]
- Sawicki, M.; Shaw, L.L. Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 2015, 5, 53129–53154. [Google Scholar] [CrossRef]
- Alvira, D.; Antorán, D.; Manyà, J.J. Assembly and electrochemical testing of renewable carbon-based anodes in SIBs: A practical guide. J. Energy Chem. 2022, 75, 457–477. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Zhou, S.; Mei, T.; Wang, X.; Qian, Y. Crystal structural design of exposed planes: Express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale 2018, 10, 17435–17455. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chem. Mater. 2015, 27, 2591–2599. [Google Scholar] [CrossRef]
- Sandhya, C.P.; John, B.; Gouri, C. Lithium titanate as anode material for lithium-ion cells: A review. Ionics 2014, 20, 601–620. [Google Scholar] [CrossRef]
- Huang, S.; Cheong, L.-Z.; Wang, D.; Shen, C. Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 23672–23678. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhou, Q.; Li, X.; Xiong, X. Fast-charging anodes for lithium ion batteries: Progress and challenges. Chem. Commun. 2024, 60, 2472–2488. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Kim, H.W.; Lee, S.S.; Kim, H.J.; Kim, J.; Jung, Y.; Kim, Y. Ceramic-based composite solid electrolyte for lithium-ion batteries. ChemPlusChem 2015, 80, 1100–1103. [Google Scholar] [CrossRef]
- Bérardan, D.; Franger, S.; Meena, A.K.; Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 2016, 4, 9536–9541. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, S.; Luo, L.; Ding, M.S.; Zheng, J.; Cartmell, S.S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Wide-temperature electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 18826–18835. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mahdavi, H. Recent development of polyolefin-based microporous separators for Li−ion batteries: A review. Chem. Rec. 2020, 20, 570–595. [Google Scholar] [CrossRef]
- Wang, Y.; Travas-Sejdic, J.; Steiner, R. Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery. Solid. State Ion. 2002, 148, 443–449. [Google Scholar] [CrossRef]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884. [Google Scholar] [CrossRef]
- Xie, M.; Xu, M.; Huang, Y.; Chen, R.; Zhang, X.; Li, L.; Wu, F. Na2NixCo1−xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries. Electrochem. Commun. 2015, 59, 91–94. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, A.; Peng, L.; Zhao, F.; Tang, Y.; Zhou, Y.; Yu, G. Cyanogel-enabled homogeneous Sb–Ni–C ternary framework electrodes for enhanced sodium storage. ACS Nano 2018, 12, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Y.; Zhu, Y.; Culver, J.N.; Lundgren, C.A.; Xu, K.; Wang, C. Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes. ACS Nano 2013, 7, 3627–3634. [Google Scholar] [CrossRef]
- Monti, D.; Jónsson, E.; Boschin, A.; Palacín, M.R.; Ponrouch, A.; Johansson, P. Towards standard electrolytes for sodium-ion batteries: Physical properties, ion solvation and ion-pairing in alkyl carbonate solvents. Phys. Chem. Chem. Phys. 2020, 22, 22768–22777. [Google Scholar] [CrossRef]
- Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacín, M.R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572. [Google Scholar] [CrossRef]
- Norton, J.J.; Schlegel, D.M. Lithium resources of North America; US Government Printing Office: Washington, DC, USA, 1955. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Han, Y.; Zhang, S. Review on the beneficiation of Li, Be, Ta, Nb-bearing polymetallic pegmatite ores in China. Minerals 2023, 13, 865. [Google Scholar] [CrossRef]
- Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng. 2019, 131, 170–184. [Google Scholar] [CrossRef]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The lithium market, resources and processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Kuang, G. Recovery of lithium from mineral resources: State-of-the-art and perspectives–A review. Hydrometallurgy 2019, 189, 105129. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Kozhukhova, M.; Zhernovskaya, I.; Promakhov, V. The correlation of temperature-mineral phase transformation as a controlling factor of thermal and mechanical performance of fly ash-based alkali-activated binders. Materials 2020, 13, 5181. [Google Scholar] [CrossRef] [PubMed]
- Kasatkin, A.V.; Plášil, J.; Pekov, I.J.; Belakovskiy, D.I.; Nestola, F.; Čejka, J.; Vigasina, M.F.; Zorzi, F.; Thorne, B. Karpenkoite, Co3(V2O7)(OH)2·2H2O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA. J. Geosci. 2015, 60, 251–257. [Google Scholar] [CrossRef]
- Bailey, J.C. Formation of cryolite and other aluminofluorides: A petrologic review. Bull. Geol. Soc. Den. 1980, 29, 1–45. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Abirami, M.; Kim, J.; Go, W.; Hwang, S.M.; Kim, Y. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications. J. Power Sources 2017, 341, 404–410. [Google Scholar] [CrossRef]
- Ellis, B.L.; Nazar, L.F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid. State Mater. Sci. 2012, 16, 168–177. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukherjee, P.P. Electrolytes and interfaces driven thermal stability of sodium-ion batteries. In Electrochemical Society Meeting Abstracts; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2022; p. 501. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Ritchie, A.G. Recent developments and future prospects for lithium rechargeable batteries☆. J. Power Sources 2001, 96, 1–4. [Google Scholar] [CrossRef]
- Xie, K.; Wei, W.; Yu, H.; Deng, M.; Ke, S.; Zeng, X.; Li, Z.; Shen, C.; Wang, J.; Wei, B. Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Adv. 2016, 6, 35746–35750. [Google Scholar] [CrossRef]
- Roscher, M.A.; Assfalg, J.; Bohlen, O.S. Detection of utilizable capacity deterioration in battery systems. IEEE Trans. Veh. Technol. 2011, 60, 98–103. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, G.-L.; Che, H.; Wang, H.; Yang, K.; Yang, X.; Guo, F.; Ren, Y.; Chen, Z.; Amine, K.; et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909–4918. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Z.; Li, Q.; Wang, X.; Xu, X.; Meng, J.; Ren, W.; Zhang, X.; Huang, Y.; Mai, L. 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3∥Na3V2(PO4)3. ACS Appl. Mater. Interfaces 2018, 10, 10022–10028. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Hu, Y.-S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338. [Google Scholar] [CrossRef]
- Quantifying Battery Raw Material Demand. Available online: https://www.woodmac.com/news/opinion/quantifying-battery-raw-material-demand/ (accessed on 3 April 2022).
- Ferraro, M.; Tumminia, G. Techno-economics analysis on sodium-ion batteries: Overview and prospective. In Emerging Battery Technologies to Boost the Clean Energy Transition: Cost, Sustainability, and Performance Analysis; Passerini, S., Barelli, L., Baumann, M., Peters, J., Weil, M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 259–266. [Google Scholar] [CrossRef]
- Reid, M. Is the Electric Vehicle and Battery Supply Chain Charged for Success? Available online: https://www.woodmac.com/news/opinion/electric-vehicle-battery-supply-chain/ (accessed on 3 August 2023).
- Cathode Innovation Makes Sodium-Ion Battery an Attractive Option for Electric Vehicles; Argonne National Laboratory, The US Department of Energy (DOE): Lemont, IL, USA, 2024.
- Jaffe, S. Vulnerable Links in the Lithium-Ion Battery Supply Chain. Joule 2017, 1, 225–228. [Google Scholar] [CrossRef]
- DOE. Sodium Batteries Technology Strategy Assessment; The US Department of Energy (DOE): Washington, DC, USA, 2023. [Google Scholar]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- König, A.; Nicoletti, L.; Schröder, D.; Wolff, S.; Waclaw, A.; Lienkamp, M. An Overview of Parameter and Cost for Battery Electric Vehicles. World Electr. Veh. J. 2021, 12, 21. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792. [Google Scholar] [CrossRef]
- Adelhelm, P.; Hartmann, P.; Bender, C.L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. [Google Scholar] [CrossRef] [PubMed]
- United States Geological Survey. Mineral Commodity Summaries; United States Geological Survey: Reston, VA, USA, 2023. [Google Scholar]
- Ouerghi, D.; Li, Z. Chinese Lithium Prices Extend Uptrend amid Futures Strength; Other Markets in Stalemate. Available online: https://www.fastmarkets.com/insights/chinese-lithium-prices-extend-uptrend-amid-futures-strength-other-markets-in-stalemate/ (accessed on 10 May 2024).
- Zang, G.; Zhang, J.; Xu, S.; Xing, Y. Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis. Energy 2021, 218, 119504. [Google Scholar] [CrossRef]
- Greenwood, M.; Wentker, M.; Leker, J. A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes. J. Power Sources Adv. 2021, 9, 100055. [Google Scholar] [CrossRef]
- Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; et al. 2021 roadmap for sodium-ion batteries. J. Phys. Energy 2021, 3, 031503. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, W.-H. Promising sustainable technology for energy storage devices: Natural protein-derived active materials. Electrochim. Acta 2023, 441, 141860. [Google Scholar] [CrossRef]
- Volta Foundation. Battery Report 2023; Volta Foundation: San Francisco, CA, USA, 2024. [Google Scholar]
- Wentker, M.; Greenwood, M.; Leker, J. A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies 2019, 12, 504. [Google Scholar] [CrossRef]
- Srivastava, M.; M.R., A.K.; Zaghib, K. Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review. Batteries 2024, 10, 268. [Google Scholar] [CrossRef]
- Bouguern, M.D.; Madikere Raghunatha Reddy, A.K.; Li, X.; Deng, S.; Laryea, H.; Zaghib, K. Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries . Batteries 2024, 10, 39. [Google Scholar] [CrossRef]
- Karabelli, D.; Singh, S.; Kiemel, S.; Koller, J.; Konarov, A.; Stubhan, F.; Miehe, R.; Weeber, M.; Bakenov, Z.; Birke, K.P. Sodium-based batteries: In search of the best compromise between sustainability and maximization of electric performance. Front. Energy Res. 2020, 8, 605129. [Google Scholar] [CrossRef]
- Rudola, A.; Wright, C.J.; Barker, J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective. Energy Mater. Adv. 2021, 2021, 9798460. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855. [Google Scholar] [CrossRef]
- Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D.H.C.; Lee, P.S. Optimization strategies toward functional sodium-ion batteries. Energy Environ. Mater. 2023, 6, e12633. [Google Scholar] [CrossRef]
- Chen, L.; Kishore, B.; Walker, M.; Dancer, C.E.; Kendrick, E. Undefined: Nanozeolite ZSM-5 electrolyte additive for long life sodium-ion batteries. Chem. Commun. 2020, 56, 11609–11612. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jeong, S.Y.; Lee, T.K.; Park, M.W.; Lim, H.Y.; Sung, J.; Cho, J.; Kwak, S.K.; Hong, S.Y.; Choi, N.-S. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun. 2021, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.N.; Islam, M.; Meena, A.; Faizan, M.; Han, D.; Bathula, C.; Hajibabaei, A.; Anand, R.; Nam, K.-W. Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage. Adv. Funct. Mater. 2023, 33, 2304617. [Google Scholar] [CrossRef]
- Li, M.; Du, Z.; Khaleel, M.A.; Belharouak, I. Materials and engineering endeavors towards practical sodium-ion batteries. Energy Storage Mater. 2020, 25, 520–536. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- Ji, X.; Hou, H.; Zou, G. Sodium-Ion Batteries: Technologies and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Xu, S.; Yao, K.; Yang, D.; Chen, D.; Lin, C.; Liu, C.; Wu, H.; Zeng, J.; Liu, L.; Zheng, Y.; et al. Interfacial Engineering of Na3V2(PO4)2O2F Cathode for Low-Temperature (−40 °C) Sodium-Ion Batteries. ACS Appl. Mater. Interfaces. 2023, 15, 14329–14338. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Xu, S.; Yao, Y.; Chen, D.; Liu, L.; Xu, C.; Feng, Y.; Rui, X.; Yu, Y. Multi-component surface engineering of Na3V2(PO4)2O2F for low-temperature (−40 °C) sodium-ion batteries. Chem. Commun. 2022, 58, 10349–10352. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; et al. Undefined: Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources 2015, 300, 29–40. [Google Scholar] [CrossRef]
- Mukai, K.; Inoue, T.; Kato, Y.; Shirai, S. Undefined: Superior low-temperature power and cycle performances of Na-ion battery over Li-ion battery. ACS Omega 2017, 2, 864–872. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Z.; Sun, Z.; Liu, P.; Jin, T.; Chen, X.; Li, H.; Lu, W.; Jiao, L.; Zhu, K.; et al. Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 2022, 18, 2107662. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Song, C.; Li, G. Fast-charging strategies for lithium-ion batteries: Advances and perspectives. ChemPlusChem 2022, 87, e202200155. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, J.; Xiao, J.; Ren, N.; Pan, B.; Chen, C.; Chen, C. Introducing a pseudocapacitive lithium storage mechanism into graphite by defect engineering for fast-charging lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 16279–16288. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jeghan, S.M.N.; Lee, G. Boost charging lithium-ion battery using expanded graphite anode with enhanced performance. Mater. Lett. 2021, 299, 130077. [Google Scholar] [CrossRef]
- Li, M. Elevating the practical application of sodium-ion batteries through advanced characterization studies on cathodes. Energies 2023, 16, 8004. [Google Scholar] [CrossRef]
- He, M.; Mejdoubi, A.E.L.; Chartouni, D.; Morcrette, M.; Troendle, P.; Castiglioni, R. High power NVPF/HC-based sodium-ion batteries. J. Power Sources 2023, 588, 233741. [Google Scholar] [CrossRef]
- Rudola, A.; Sayers, R.; Wright, C.J.; Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 2023, 8, 215–218. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Chou, S.L.; Liu, Y.; Dou, S.X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530. [Google Scholar] [CrossRef]
- Okoshi, M.; Yamada, Y.; Yamada, A.; Nakai, H. Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. J. Electrochem. Soc. 2013, 160, A2160. [Google Scholar] [CrossRef]
- Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 2010, 12, 355–358. [Google Scholar] [CrossRef]
- Ong, S.P.; Chevrier, V.L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688. [Google Scholar] [CrossRef]
- Barker, J.; Heap, R. O3/p2 Mixed Phase Sodium-Containing Doped Layered Oxide Materials. U.S. Patent Application No. 17/045,660, 2021. Available online: https://patents.google.com/patent/US20210155501A1/en (accessed on 27 May 2021).
- Kim, H. Sodium-ion battery: Can it compete with Li-ion? ACS Mater. Au 2023, 3, 571–575. [Google Scholar] [CrossRef]
- Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J.W.; Tarascon, J.M. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2019, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.F.; Baumann, M.; Binder, J.R.; Weil, M. On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective-a cell-chemistry specific modelling approach. Sustain. Energy Fuels 2021, 5, 6414–6429. [Google Scholar] [CrossRef]
- Wickerts, S.; Arvidsson, R.; Nordelöf, A.; Svanström, M.; Johansson, P. Prospective life cycle assessment of sodium-ion batteries made from abundant elements. J. Ind. Ecol. 2024, 28, 116–129. [Google Scholar] [CrossRef]
- Carvalho, M.L.; Mela, G.; Temporelli, A.; Brivio, E.; Girardi, P. Sodium-Ion Batteries with Ti1 Al1 TiC1.85 MXene as Negative Electrode: Life Cycle Assessment and Life Critical Resource Use Analysis. Sustainability 2022, 14, 5976. [Google Scholar] [CrossRef]
- Serrano-Luján, L.; Víctor-Román, S.; Toledo, C.; Sanahuja-Parejo, O.; Mansour, A.E.; Abad, J.; Amassian, A.; Benito, A.M.; Maser, W.K.; Urbina, A. Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Appl. Sci. 2019, 1, 179. [Google Scholar] [CrossRef]
- Rey, I.; Iturrondobeitia, M.; Akizu-Gardoki, O.; Minguez, R.; Lizundia, E. Environmental impact assessment of Na3V2(PO4)3 cathode production for sodium-ion batteries. Adv. Energy Sustain. Res. 2022, 3, 2200049. [Google Scholar] [CrossRef]
- Lai, X.; Chen, J.; Chen, Q.; Han, X.; Lu, L.; Dai, H.; Zheng, Y. Comprehensive assessment of carbon emissions and environmental impacts of sodium-ion batteries and lithium-ion batteries at the manufacturing stage. J. Clean. Prod. 2023, 423, 138674. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.S.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Zuo, W.; Zhou, S.; Zeng, G.; Zhang, B.; Zhang, H.; Huang, Z.; Zheng, L.; Xu, J.; et al. Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries. Nat. Sustain. 2024, 7, 348–359. [Google Scholar] [CrossRef]
- Mosallanejad, B.; Malek, S.S.; Ershadi, M.; Daryakenari, A.A.; Cao, Q.; Boorboor Ajdari, F.; Ramakrishna, S. Cycling degradation and safety issues in sodium-ion batteries: Promises of electrolyte additives. J. Electroanal. Chem. 2021, 895, 115505. [Google Scholar] [CrossRef]
- Zarrabeitia, M.; Gomes Chagas, L.; Kuenzel, M.; Gonzalo, E.; Rojo, T.; Passerini, S.; Muñoz-Márquez, M.Á. Toward stable electrode/electrolyte interface of P2-layered oxide for rechargeable Na-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 28885–28893. [Google Scholar] [CrossRef]
- Lin, Z.; Xia, Q.; Wang, W.; Li, W.; Chou, S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 2019, 1, 376–389. [Google Scholar] [CrossRef]
- Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-X.; Zhang, X.-L.; Zhao, X.-X.; Zhao, Y.-Y.; Aravindan, V.; Liu, Y.-H.; Geng, H.; Wu, X.-L. Electrode/electrolyte additives for practical sodium-ion batteries: A mini review. Inorg. Chem. Front. 2023, 10, 37–48. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29. [Google Scholar] [CrossRef]
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974. [Google Scholar] [CrossRef]
Batteries | Component | Materials | Principle Characteristics | Specific Capacities/Properties | References |
---|---|---|---|---|---|
LIBs | Cathodes | LFP, LCO, NMC, NCA, LMO, LNMO | Various structures (olivine for LFP; layered for NCA, NMC, LCO; spinel for LMO, LNMO) | LFP~170 mAh/g, LCO~200 mAh/g, NMC~220 mAh/g, NCA~250 mAh/g. | [46,47] |
Anodes | Graphite, silicon, lithium metal, LTO | High stability with graphite; high capacity but volume expansion with silicon; fast charging with LTO | Graphite~372 mAh/g, silicon~3597 mAh/g, LTO 175 mAh/g, Li metal 3860 mAh/g | [48,49,50,51] | |
Electrolytes | Lithium salt like LiPF6 in a mixture of EC, DEC, DMC, and EMC or solid electrolytes | EC popular solvent; lithium salts for ion transport | Li+ conductivity 10−3–10−2 S/cm at ambient temperature | [52,53,54,55] | |
Separators | Polyolefins (PE, PP), gel polymers | Mechanical strength, thermal resistance, enhanced ion movement | Porosity 40–60%, pore size <1 µm | [54,55] | |
SIBs | Cathodes | Na0.44MnO2, NaCrO2, NaFeO2, NaFeSO4, Na3V2(PO4)3, NaFeF3, NaMnFe(CN)6, Na0.45Ni0.22Co0.11Mn0.66O2 | Metal oxide, sulfides, phosphates, fluorides, PBA | Na0.44MnO2: 121–130 mAh/g NaCrO2: 120 mA h/g NaFe0.5Mn0.5O2: 110 mAh/g | [38,54,56,57] |
Anodes | HC, (Sn/C/Ni) nanorods, antimony/carbon | HC for stability; Sn/C/Ni nanorods for volume changes; high capacity and cycle life with antimony/carbon | HC: 220 mA h/g Sn/C/Ni: 730 mA h/g | [38,58,59] | |
Electrolytes | Sodium salts of NaClO4, NaPF6, or NaTFSI in polycarbonates, THF, Triglyme | Good conductivity and thermal stability | Fast ionic mobility for Na+ (5 × 10−6 S/cm) | [38,51,60,61] | |
Separators | Polyolefins (PE, PP), nonwoven hybrid PVDF-HFP|SiO2, cellulose | Good mechanical properties, effective Na+ movement with inhibited dendrite formation | Porosity 40–60%, pore size < 1 µm for PE, porosity 49.9%, pore size > 4 μm for cellulose | [62,63] |
Property | Lithium | Sodium | References |
---|---|---|---|
Cation radius | 0.76 Å | 1.06 Å | [72,73] |
Ionic radius | 0.68 Å | 0.98 Å | [72,73] |
Density | 0.534 g/cm3 | 0.97 g/cm3 | [72,73] |
Capacity | 3829 mAh/g | 1165 mAh/g | [72,73] |
Standard electrode potential vs. Li/Li+ | 0 V | 0.3 V | [72,73] |
Ligand arrangement preference | Octahedral (LiCoO2), Tetrahedral (Li4Ti5O12) | Octahedral (NaCl), prismatic (Na3AlF6) | [72,73] |
Reactivity with water | Slowly, less vigorously than sodium | Reacts vigorously, can ignite or explode | [72,73] |
Abundance in Earth’s crust | 20 ppm | 23,000 ppm | [72,73] |
Cost | 5000 USD/ton | 150 USD/ton | [72,73] |
Average voltage | 3.6–4.2 V | 3.0–3.6 V | [70,71] |
Energy density | 150–250 Wh/kg | 100–150 Wh/kg | [74,75] |
Cycle life | Potential to above 3000 cycles | 1000–3000 cycles | [76,77,78] |
Charge/discharge efficiency | High, approximately 90% or more | Slightly lower due to internal resistance | [79] |
Temperature sensitivity | High | Low | [80] |
Charging speed | High | Slow | [77,79] |
Safety | Higher risk of thermal runaway | Safer, less prone to thermal runaway | [80,81] |
Applications | Consumer electronics, EVs | Grid storage, short-range EVs | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekahi, A.; Dorri, M.; Rezaei, M.; Bouguern, M.D.; Madikere Raghunatha Reddy, A.K.; Li, X.; Deng, S.; Zaghib, K. Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium. Batteries 2024, 10, 279. https://doi.org/10.3390/batteries10080279
Nekahi A, Dorri M, Rezaei M, Bouguern MD, Madikere Raghunatha Reddy AK, Li X, Deng S, Zaghib K. Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium. Batteries. 2024; 10(8):279. https://doi.org/10.3390/batteries10080279
Chicago/Turabian StyleNekahi, Atiyeh, Mehrdad Dorri, Mina Rezaei, Mohamed Djihad Bouguern, Anil Kumar Madikere Raghunatha Reddy, Xia Li, Sixu Deng, and Karim Zaghib. 2024. "Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium" Batteries 10, no. 8: 279. https://doi.org/10.3390/batteries10080279
APA StyleNekahi, A., Dorri, M., Rezaei, M., Bouguern, M. D., Madikere Raghunatha Reddy, A. K., Li, X., Deng, S., & Zaghib, K. (2024). Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium. Batteries, 10(8), 279. https://doi.org/10.3390/batteries10080279