Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. LLZTO Pellet Preparation
2.2. Open-Air Plasma Conditions
2.3. Materials Characterization
2.4. Electrochemical Impedance Spectroscopy (EIS) Measurements
3. Results and Discussion
3.1. Li2CO3 Formation Kinetics
3.2. Effect of Open-Air Plasma Treatment on Reduction of Surface Li2CO3 on LLZTO
3.3. Influence of Shroud Gas on Surface Reduction of Li2CO3 on LLZTO
3.4. Effect of Open-Air Plasma Treatment on LLZTO Crystal Structure and Surface Morphology
3.5. Effect of Open-Air Plasma Treatment on Interface Resistance and Ionic Conductivity
4. Conclusions/Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Samson, A.J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A Bird’s-Eye View of Li-Stuffed Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-Solid-State Li Batteries. Energy Environ. Sci. 2019, 12, 2957–2975. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Zou, G. Garnet Solid Electrolyte for Advanced All-solid-state Li Batteries. Adv. Energy Mater. 2021, 11, 2000648. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, N.; Huo, H.; Guo, X. Comprehensive Investigation into Garnet Electrolytes toward Application-Oriented Solid Lithium Batteries. Electrochem. Energy Rev. 2020, 3, 656–689. [Google Scholar] [CrossRef]
- Abouali, S.; Yim, C.-H.; Merati, A.; Abu-Lebdeh, Y.; Thangadurai, V. Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture. ACS Energy Lett. 2021, 6, 1920–1941. [Google Scholar] [CrossRef]
- Thompson, T.; Wolfenstine, J.; Allen, J.L.; Johannes, M.; Huq, A.; David, I.N.; Sakamoto, J. Tetragonal vs. Cubic Phase Stability in Al–Free Ta Doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A Mater. 2014, 2, 13431–13436. [Google Scholar] [CrossRef]
- Ma, K.; Chen, B.; Li, C.-X.; Thangadurai, V. Improvement of the Li-Ion Conductivity and Air Stability of the Ta-Doped Li7La3Zr2O12 Electrolyte via Ga Co-Doping and Its Application in Li–S Batteries. J. Mater. Chem. A Mater. 2024, 12, 3601–3615. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Utmost Limits of Various Solid Electrolytes in All-Solid-State Lithium Batteries: A Critical Review. Renew. Sustain. Energy Rev. 2019, 109, 367–385. [Google Scholar] [CrossRef]
- Oh, P.; Lee, H.; Park, S.; Cha, H.; Kim, J.; Cho, J. Improvements to the Overpotential of All-solid-state Lithium-ion Batteries during the Past Ten Years. Adv. Energy Mater. 2020, 10, 2000904. [Google Scholar] [CrossRef]
- Huo, H.; Luo, J.; Thangadurai, V.; Guo, X.; Nan, C.-W.; Sun, X. Li2CO3: A Critical Issue for Developing Solid Garnet Batteries. ACS Energy Lett. 2019, 5, 252–262. [Google Scholar] [CrossRef]
- Yi, X.; Guo, Y.; Pan, S.; Wang, Y.; Chi, S.; Wu, S.; Yang, Q.-H. Duality of Li2CO3 in Solid-State Batteries. Trans. Tianjin Univ. 2023, 29, 73–87. [Google Scholar] [CrossRef]
- Feng, W.; Zhao, Y.; Xia, Y. Solid Interfaces for the Garnet Electrolytes. Adv. Mater. 2024, 36, 2306111. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, Z.; Ma, Y.; Zhang, Y.; Wang, Y.; Wang, X. Recent Advances in Solving Li2CO3 Problems in Garnet-Based Solid-State Battery: A Systematic Review (2020–2023). J. Energy Chem. 2024, 90, 58–76. [Google Scholar] [CrossRef]
- Familoni, O.; Zhou, Y.; Duan, H. Air Stability of LLZO Electrolytes. In Solid Electrolytes for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 69–89. [Google Scholar]
- Wang, J.; Chen, L.; Li, H.; Wu, F. Anode Interfacial Issues in Solid-state Li Batteries: Mechanistic Understanding and Mitigating Strategies. Energy Environ. Mater. 2023, 6, e12613. [Google Scholar] [CrossRef]
- Hofstetter, K.; Samson, A.J.; Narayanan, S.; Thangadurai, V. Present Understanding of the Stability of Li-Stuffed Garnets with Moisture, Carbon Dioxide, and Metallic Lithium. J. Power Sources 2018, 390, 297–312. [Google Scholar] [CrossRef]
- Wu, J.-F.; Pu, B.-W.; Wang, D.; Shi, S.-Q.; Zhao, N.; Guo, X.; Guo, X. In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. ACS Appl. Mater. Interfaces 2018, 11, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wu, C.H.; Jarry, A.; Chen, W.; Ye, Y.; Zhu, J.; Kostecki, R.; Persson, K.; Guo, J.; Salmeron, M. Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 17649–17655. [Google Scholar] [CrossRef] [PubMed]
- Biao, J.; Han, B.; Cao, Y.; Li, Q.; Zhong, G.; Ma, J.; Chen, L.; Yang, K.; Mi, J.; Deng, Y. Inhibiting Formation and Reduction of Li2CO3 to LiCx at Grain Boundaries in Garnet Electrolytes to Prevent Li Penetration. Adv. Mater. 2023, 35, 2208951. [Google Scholar] [CrossRef] [PubMed]
- Yan, G. Mechanical Behavior of Solid Electrolyte Materials for Lithium-Ion Batteries; RWTH Aachen University: Aachen, Germany, 2020. [Google Scholar]
- Wang, S.; Barks, E.; Lin, P.-T.; Xu, X.; Melamed, C.; McConohy, G.; Nemsak, S.; Chueh, W. Effect of H+ Exchange & Surface Impurities on Bulk & Interfacial Electrochemistry of Garnet Solid Electrolytes. Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, S.; Kim, J. Design Strategies for Anodes and Interfaces Toward Practical Solid-State Li-Metal Batteries. Adv. Sci. 2023, 10, 2302263. [Google Scholar] [CrossRef]
- Ji, W.; Luo, B.; Yu, G.; Wang, Q.; Zhang, Z.; Tian, Y.; Liu, Z.; Ji, W.; Nong, Y.; Wang, X. A Review of Challenges and Issues Concerning Interfaces for Garnet-Type All-Solid-State Batteries. J. Alloys Compd. 2024, 979, 173530. [Google Scholar] [CrossRef]
- Miao, X.; Guan, S.; Ma, C.; Li, L.; Nan, C. Role of Interfaces in Solid-State Batteries. Adv. Mater. 2023, 35, 2206402. [Google Scholar] [CrossRef]
- Sun, H.; Celadon, A.; Cloutier, S.G.; Al-Haddad, K.; Sun, S.; Zhang, G. Lithium Dendrites in All-solid-state Batteries: From Formation to Suppression. Battery Energy 2024, 3, 20230062. [Google Scholar] [CrossRef]
- Kodgire, P.; Tripathi, B.; Chandra, P. Review of Garnet-Based Solid Electrolytes for Li-Ion Batteries (LIBs). J. Electron. Mater. 2024, 53, 2203–2228. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Wang, J.; Xu, T.; Zhang, K.; Du, Z. Enhanced Densification and Ionic Conductivity of Li-Garnet Electrolyte: Efficient Li2CO3 Elimination and Fast Grain-Boundary Transport Construction. Chem. Eng. J. 2020, 393, 124797. [Google Scholar] [CrossRef]
- Li, J.; Gong, Z.; Xie, W.; Yu, S.; Wei, Y.; Li, D.; Yang, L.; Chen, D.; Li, Y.; Chen, Y. Growth Process and Removal of Interface Contaminants for Garnet-Based Solid-State Lithium Metal Batteries. ACS Appl. Energy Mater. 2023, 6, 12432–12441. [Google Scholar] [CrossRef]
- Liu, J.; Guo, W.; Guo, H.; Xu, C.; Zhang, L.; Chen, Y.; Shen, F.; Han, X. A Simple and Efficient Strategy for Ameliorating Li/LLZO Interfacial Contact. Energy Fuels 2022, 36, 8500–8505. [Google Scholar] [CrossRef]
- Xu, J.; Tian, W.; Lu, K.; Shan, S.; Zhang, J.; Wu, Y.; Wu, M.; Tang, W. Effect of Acid Treatment of Li7La3Zr2O12 on Ionic Conductivity of Composite Solid Electrolytes. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012110. [Google Scholar] [CrossRef]
- Huo, H.; Chen, Y.; Zhao, N.; Lin, X.; Luo, J.; Yang, X.; Liu, Y.; Guo, X.; Sun, X. In-Situ Formed Li2CO3-Free Garnet/Li Interface by Rapid Acid Treatment for Dendrite-Free Solid-State Batteries. Nano Energy 2019, 61, 119–125. [Google Scholar] [CrossRef]
- Zhang, H.; Paggiaro, G.; Okur, F.; Huwiler, J.; Cancellieri, C.; Jeurgens, L.P.H.; Chernyshov, D.; van Beek, W.; Kovalenko, M.V.; Kravchyk, K.V. On High-Temperature Thermal Cleaning of Li7La3Zr2O12 Solid-State Electrolytes. ACS Appl. Energy Mater. 2023, 6, 6972–6980. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lü, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-ion Batteries. Angew. Chem. Int. Ed. 2017, 56, 753–756. [Google Scholar] [CrossRef]
- Noeske, M.; Degenhardt, J.; Strudthoff, S.; Lommatzsch, U. Plasma Jet Treatment of Five Polymers at Atmospheric Pressure: Surface Modifications and the Relevance for Adhesion. Int. J. Adhes. Adhes. 2004, 24, 171–177. [Google Scholar] [CrossRef]
- Kim, M.C.; Yang, S.H.; Boo, J.-H.; Han, J.G. Surface Treatment of Metals Using an Atmospheric Pressure Plasma Jet and Their Surface Characteristics. Surf. Coat. Technol. 2003, 174–175, 839–844. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008; ISBN 9781139471732. [Google Scholar]
- Lopes, B.B.; Ayres, A.P.A.; Lopes, L.B.; Negreiros, W.M.; Giannini, M. The Effect of Atmospheric Plasma Treatment of Dental Zirconia Ceramics on the Contact Angle of Water. Appl. Adhes. Sci. 2014, 2, 17. [Google Scholar] [CrossRef]
- Bárdos, L.; Baránková, H. Cold Atmospheric Plasma: Sources, Processes, and Applications. Thin Solid. Film. 2010, 518, 6705–6713. [Google Scholar] [CrossRef]
- Zabidi, N.Z.A.; Zaaba, S.K.; Sut, K.D.E.; Mohamad, C.; Masiman, R.I. A Brief Review on Atmospheric Air Plasma. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2071, p. 012004. [Google Scholar]
- Rolston, N.; Scheideler, W.J.; Flick, A.C.; Chen, J.P.; Elmaraghi, H.; Sleugh, A.; Zhao, O.; Woodhouse, M.; Dauskardt, R.H. Rapid Open-Air Fabrication of Perovskite Solar Modules. Joule 2020, 4, 2675–2692. [Google Scholar] [CrossRef]
- Rolston, N.; Sleugh, A.; Chen, J.P.; Zhao, O.; Colburn, T.W.; Flick, A.C.; Dauskardt, R.H. Perspectives of Open-Air Processing to Enable Perovskite Solar Cell Manufacturing. Front. Energy Res. 2021, 9, 684082. [Google Scholar] [CrossRef]
- Hovish, M.Q.; Hilt, F.; Rolston, N.; Xiao, Q.; Dauskardt, R.H. Open Air Plasma Deposition of Superhydrophilic Titania Coatings. Adv. Funct. Mater. 2019, 29, 1806421. [Google Scholar] [CrossRef]
- Kewitz, T.; Regula, C.; Fröhlich, M.; Ihde, J.; Kersten, H. Influence of the Nozzle Head Geometry on the Energy Flux of an Atmospheric Pressure Plasma Jet. EPJ Techn Instrum. 2021, 8, 1. [Google Scholar] [CrossRef]
- Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H. Reaction Mechanisms of Lithium Garnet Pellets in Ambient Air: The Effect of Humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832–2839. [Google Scholar] [CrossRef]
- Sharafi, A. Microstructural and Interface Engineering of Garnet-Type Fast Li-Ion-Conductor for Use in Solid-State Batteries; University of Michigan: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Mosqueda, H.A.; Vazquez, C.; Bosch, P.; Pfeiffer, H. Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). Chem. Mater. 2006, 18, 2307–2310. [Google Scholar] [CrossRef]
- Pfeiffer, H.; Sánchez-Sánchez, J.; Álvarez, L.J. Lithium and Tritium Diffusion in Lithium Oxide (Li2O), a Molecular Dynamics Simulation. J. Nucl. Mater. 2000, 280, 295–303. [Google Scholar] [CrossRef]
- Guo, J.; Weller, J.M.; Yang, S.; Bhat, M.H.; Chan, C.K. Reactive Sintering of Garnet-Type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) from Pyrochlore Precursors Prepared Using a Non-Aqueous Sol–Gel Method. Ionics 2023, 29, 581–590. [Google Scholar] [CrossRef]
- Guo, J.; Chan, C.K. Lithium Dendrite Propagation in Ta-Doped Li7La3Zr2O12 (LLZTO): Comparison of Reactively Sintered Pyrochlore-to-Garnet vs. LLZTO by Solid-State Reaction and Conventional Sintering. ACS Appl. Mater. Interfaces 2024, 16, 4519–4529. [Google Scholar] [CrossRef]
- Weller, J.M.; Whetten, J.A.; Chan, C.K. Nonaqueous Polymer Combustion Synthesis of Cubic Li7La3Zr2O12 Nanopowders. ACS Appl. Mater. Interfaces 2020, 12, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Badami, P.; Weller, J.M.; Wahab, A.; Redhammer, G.; Ladenstein, L.; Rettenwander, D.; Wilkening, M.; Chan, C.K.; Kannan, A.N.M. Highly Conductive Garnet-Type Electrolytes: Access to Li6.5La3Zr1.5Ta0.5O12 Prepared by Molten Salt and Solid-State Methods. ACS Appl. Mater. Interfaces 2020, 12, 48580–48590. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, J.-T.; Wang, C.-A.; Xie, H.; Goodenough, J.B. Optimizing Li+ Conductivity in a Garnet Framework. J. Mater. Chem. 2012, 22, 15357–15361. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Greczynski, G.; Hultman, L. Referencing to Adventitious Carbon in X-Ray Photoelectron Spectroscopy: Can Differential Charging Explain C 1s Peak Shifts? Appl. Surf. Sci. 2022, 606, 154855. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S. Systematic and Collaborative Approach to Problem Solving Using X-ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709. [Google Scholar] [CrossRef]
- Sharafi, A.; Kazyak, E.; Davis, A.L.; Yu, S.; Thompson, T.; Siegel, D.J.; Dasgupta, N.P.; Sakamoto, J. Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12. Chem. Mater. 2017, 29, 7961–7968. [Google Scholar] [CrossRef]
- Jain, V.; Biesinger, M.C.; Linford, M.R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions in the Context of Peak Fitting X-Ray Photoelectron Spectroscopy (XPS) Narrow Scans. Appl. Surf. Sci. 2018, 447, 548–553. [Google Scholar] [CrossRef]
- Wood, K.N.; Teeter, G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. ACS Appl. Energy Mater. 2018, 1, 4493–4504. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, H.; Cheng, H.; Guan, W.; Yang, J.; Li, Z.; Huang, Y. An Oxygen Vacancy-Rich ZnO Layer on Garnet Electrolyte Enables Dendrite-Free Solid State Lithium Metal Batteries. Chem. Eng. J. 2022, 433, 133665. [Google Scholar] [CrossRef]
- Lourens, F.; Rogalla, D.; Suhr, E.; Ludwig, A. On the Influence of Annealing on the Compositional and Crystallographic Properties of Sputtered Li-Al-O Thin Films. arXiv 2024, arXiv:2402.06553. [Google Scholar]
- Fantin, R.; Van Roekeghem, A.; Benayad, A. Revisiting Co 2p Core-level Photoemission in LiCoO2 by In-lab Soft and Hard X-ray Photoelectron Spectroscopy: A Depth-dependent Study of Cobalt Electronic Structure. Surf. Interface Anal. 2023, 55, 489–495. [Google Scholar] [CrossRef]
- Jones, J.C.; Rajendran, S.; Pilli, A.; Lee, V.; Chugh, N.; Arava, L.M.R.; Kelber, J.A. In Situ X-ray Photoelectron Spectroscopy Study of Lithium Carbonate Removal from Garnet-Type Solid-State Electrolyte Using Ultra High Vacuum Techniques. J. Vac. Sci. Technol. A 2020, 38, 023201. [Google Scholar] [CrossRef]
- Weller, J.M.; Chan, C.K. Synthesis of Nanostructured Garnets. In Solid Electrolytes for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–68. [Google Scholar]
- Chan, C.K.; Yang, T.; Weller, J.M. Nanostructured Garnet-Type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-Ion Batteries. Electrochim. Acta 2017, 253, 268–280. [Google Scholar] [CrossRef]
- Weller, J.M.; Chan, C.K. Reduction in Formation Temperature of Ta-Doped Lithium Lanthanum Zirconate by Application of Lux–Flood Basic Molten Salt Synthesis. ACS Appl. Energy Mater. 2020, 3, 6466–6475. [Google Scholar] [CrossRef]
- Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H.M.; Nanda, J.; Chi, M.; Siegel, D.J.; Sakamoto, J. Impact of Air Exposure and Surface Chemistry on Li–Li7La3Zr2O12 Interfacial Resistance. J. Mater. Chem. A Mater. 2017, 5, 13475–13487. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Ouyang, Z.; Liu, F.; Zhang, Z.; Lai, Y.; Li, J.; Jiang, L. In-Situ Construction of Electronically Insulating and Air-Stable Ionic Conductor Layer on Electrolyte Surface and Grain Boundary to Enable High-Performance Garnet-Type Solid-State Batteries. Small 2024, 2402086. [Google Scholar] [CrossRef] [PubMed]
- Contarini, S.; Rabalais, J.W. Ion Bombardment-Induced Decomposition of Li and Ba Sulfates and Carbonates Studied by X-Ray Photoelectron Spectroscopy. J. Electron. Spectros Relat. Phenomena 1985, 35, 191–201. [Google Scholar] [CrossRef]
- Vema, S.; Sayed, F.N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C.P. Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes. ACS Energy Lett. 2023, 8, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Crumlin, E.J.; Chen, W.; Qiao, R.; Hou, H.; Lux, S.F.; Zorba, V.; Russo, R.; Kostecki, R.; Liu, Z. The Origin of High Electrolyte–Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 18294–18300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, M.; Mehta, A.; Xin, H.; Lin, F.; Persson, K.; Chen, G.; Crumlin, E.J.; Doeff, M. Garnet Electrolyte Surface Degradation and Recovery. ACS Appl. Energy Mater. 2018, 1, 7244–7252. [Google Scholar] [CrossRef]
- Shi, C.; Takeuchi, S.; Alexander, G.V.; Hamann, T.; O’Neill, J.; Dura, J.A.; Wachsman, E.D. High Sulfur Loading and Capacity Retention in Bilayer Garnet Sulfurized-Polyacrylonitrile/Lithium-Metal Batteries with Gel Polymer Electrolytes. Adv. Energy Mater. 2023, 13, 2301656. [Google Scholar] [CrossRef]
- Wang, C.; Xie, H.; Ping, W.; Dai, J.; Feng, G.; Yao, Y.; He, S.; Weaver, J.; Wang, H.; Gaskell, K. A General, Highly Efficient, High Temperature Thermal Pulse toward High Performance Solid State Electrolyte. Energy Storage Mater. 2019, 17, 234–241. [Google Scholar] [CrossRef]
- Xia, W.; Xu, B.; Duan, H.; Guo, Y.; Kang, H.; Li, H.; Liu, H. Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles. ACS Appl. Mater. Interfaces 2016, 8, 5335–5342. [Google Scholar] [CrossRef]
- Lu, W.; Wang, T.; Xue, M.; Zhang, C. Improved Li6.5La3Zr1.5Nb0.5O12 Electrolyte and Effects of Atmosphere Exposure on Conductivities. J. Power Sources 2021, 497, 229845. [Google Scholar] [CrossRef]
- Lan, W.; Lu, D.; Zhao, R.; Chen, H. Investigation of Al2O3 Crucible Contamination Induced by Extra Li2CO3 during Li7La3Zr2O12 Solid Electrolyte Sintering Process. Int. J. Electrochem. Sci. 2019, 14, 9695–9703. [Google Scholar] [CrossRef]
- Brugge, R.H.; Hekselman, A.K.O.; Cavallaro, A.; Pesci, F.M.; Chater, R.J.; Kilner, J.A.; Aguadero, A. Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics. Chem. Mater. 2018, 30, 3704–3713. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahal, M.; Guo, J.; Chan, C.K.; Rolston, N. Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment. Batteries 2024, 10, 249. https://doi.org/10.3390/batteries10070249
Sahal M, Guo J, Chan CK, Rolston N. Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment. Batteries. 2024; 10(7):249. https://doi.org/10.3390/batteries10070249
Chicago/Turabian StyleSahal, Mohammed, Jinzhao Guo, Candace K. Chan, and Nicholas Rolston. 2024. "Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment" Batteries 10, no. 7: 249. https://doi.org/10.3390/batteries10070249
APA StyleSahal, M., Guo, J., Chan, C. K., & Rolston, N. (2024). Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment. Batteries, 10(7), 249. https://doi.org/10.3390/batteries10070249