Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Experimental Methods
3. Results and Discussion
3.1. FTIR Chemical Characterization
3.2. EIS Results at Room Temperature
3.2.1. Pristine NZSP
3.2.2. Wetting Agent Performance at Room Temperature
3.3. Temperature Variation
3.4. Na-Ion Full Cell Internal Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SSIB | Solid-state sodium-ion battery |
NASICON | Sodium super ionic conductor |
NZSP | Na3Zr2Si2PO12 |
FTIR-ATR | Fourier transform infrared–attenuated total reflection |
PVA | Poly(vinyl alcohol) |
PVAc | Poly(vinyl acetate) |
CPE | Constant phase element |
EIS | Electrochemical impedance spectroscopy |
EDS | Energy-dispersive X-ray spectroscopy |
SEM | Scanning electron microscopy |
NVP | Sodium vanadium phosphate (Na3V2(PO4)3) |
HC | Hard carbon |
ASR | Area-specific resistance |
Appendix A
CPE1 | CPE2 | ||||||
---|---|---|---|---|---|---|---|
Material | Temp. (°C) | R1
() | R2 () | Yo1 (S) | a1 |
Yo2
(S) | a2 |
Pristine NZSP | 25 | 4.05 × | 6.77 × | 2.93 × | 0.85 | 1.27 × | 0.68 |
PVAc-based glue coating | −10 | 1.43 × | 199.00 | 8.12 × | 0.29 | 6.74 × | 0.88 |
0 | 6.04 × | 111.60 | 1.76 × | 0.26 | 7.63 × | 0.88 | |
10 | 1.79 × | 77.40 | 5.12 × | 0.20 | 8.72 × | 0.87 | |
20 | 18.77 | 23.92 | 4.73 × | 0.30 | 1.06 × | 0.86 | |
25 | 23.66 | 7.57 | 2.63 × | 0.49 | 1.71 × | 0.84 | |
40 | 16.41 | 1.65 | 1.86 × | 1.00 | 1.89 × | 0.82 | |
50 | 13.51 | 0.50 | 1.09 × | 1.00 | 2.66 × | 0.81 | |
65 | 8.639 | 0.05 | 1.21 × | 0.09 | 2.86 × | 0.81 | |
80 | 6.295 | 4.51 × | 8.98 × | 0.84 | 2.98 × | 0.82 | |
90 | 5.54 | 1.86 × | 4.75 × | 0.99 | 3.45 × | 0.81 | |
Pure PVA coating | 25 | 52.48 | 32.02 | 3.74 × | 0.62 | 8.21 × | 0.93 |
40 | 34.14 | 12.84 | 6.75 × | 0.79 | 9.46 × | 0.92 | |
50 | 26.68 | 7.09 | 1.90 × | 0.90 | 1.04 × | 0.91 | |
65 | 20.57 | 0.04 | 2.93 × | 0.89 | 1.95 × | 0.91 | |
80 | 13.00 | 0.03 | 3.42 × | 0.87 | 2.15 × | 0.90 | |
90 | 9.70 | 0.01 | 5.85 × | 0.85 | 1.78 × | 0.88 | |
25 | 29.35 | 163.30 | 5.47 × | 0.87 | 1.83 × | 0.89 | |
40 | 120.8 | 0.08 | 4.40 × | 0.97 | 3.98 × | 0.82 | |
50 | 3.966 | 94.16 | 7.22 × | 0.82 | 2.55 × | 0.85 | |
65 | 70.86 | 0.02 | 5.77 × | 1.00 | 4.80 × | 0.79 | |
80 | 52.69 | 0.01 | 6.51 × | 0.94 | 6.37 × | 0.77 | |
90 | 44.29 | 0.01 | 7.60 × | 0.89 | 8.11 × | 0.76 |
References
- Chaves, C.; Pereira, E.; Ferreira, P.; Dias, A.G. Concerns about lithium extraction: A review and application for Portugal. Extr. Ind. Soc. 2021, 8, 100928. [Google Scholar] [CrossRef]
- Peters, J.F.; Cruz, A.P.; Weil, M. Exploring the Economic Potential of Sodium-Ion Batteries. Batteries 2019, 5, 10. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [PubMed]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, P.; Zhu, K.; Zhang, Z.; Si, Y.; Wang, Y.; Jiao, L. Solid-State Electrolytes for Sodium Metal Batteries. Energy Fuels 2021, 35, 9063–9079. [Google Scholar] [CrossRef]
- Tarascon, J.M. Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule 2020, 4, 1616–1620. [Google Scholar] [CrossRef]
- Ahmad, H.; Kubra, K.T.; Butt, A.; Nisar, U.; Iftikhar, F.J.; Ali, G. Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries. J. Power Sources 2023, 581, 233518. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Ruan, Y.; Guo, F.; Liu, J.; Song, S.; Jiang, N.; Cheng, B. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceram. Int. 2019, 45, 1770–1776. [Google Scholar] [CrossRef]
- Hwang, S.M.; Park, J.S.; Kim, Y.; Go, W.; Han, J.; Kim, Y.; Kim, Y. Rechargeable Seawater Batteries—From Concept to Applications. Adv. Mater. 2019, 31, 1804936. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Q.; Lu, Y.; Shao, Y.; Qi, Y.; Qi, X.; Zhong, G.; Yang, Y.; Chen, L.; Hu, Y.S. Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering 2022, 8, 170–180. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, C.M.; Lee, Y.I.; Lee, J.H.; Hong, S.H. Spark Plasma Sintering (SPS) of NASICON Ceramics. J. Am. Ceram. Soc. 2004, 87, 305–307. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Y.; Guo, W.; Shao, Y.; Liu, L.; Lu, J.; Rong, X.; Han, X.; Li, H.; Chen, L.; et al. Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Mater. Adv. 2021, 2021, 9870879. [Google Scholar] [CrossRef]
- Li, C.; Li, R.; Liu, K.; Si, R.; Zhang, Z.; Hu, Y. NaSICON: A promising solid electrolyte for solid-state sodium batteries. Interdiscip. Mater. 2022, 1, 396–416. [Google Scholar] [CrossRef]
- Ferreira, J.; Salgueiro, T.; Marcuzzo, J.; Arruda, E.; Ventura, J.; Oliveira, J. Textile PAN Carbon Fibers Cathode for High-Voltage Seawater Batteries. Batteries 2023, 9, 178. [Google Scholar]
- Leng, H.; Huang, J.; Nie, J.; Luo, J. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2 PO12 solid electrolytes. J. Power Sources 2018, 391, 170–179. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; You, Y.; Vinu, A.; Mai, L.; You, C.Y. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Sun, Y.; Zhao, G.; Guo, H. Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries. Batteries 2023, 9, 331. [Google Scholar]
- Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.S.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012. [Google Scholar] [CrossRef]
- Aziz, S.B.; Nofal, M.M.; Abdulwahid, R.T.; Ghareeb, H.O.; Dannoun, E.M.; Abdullah, R.M.; Hamsan, M.H.; Kadir, M.F. Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers 2021, 13, 803. [Google Scholar] [CrossRef]
- Gebert, F.; Knott, J.; Gorkin, R.; Chou, S.L.; Dou, S.X. Polymer electrolytes for sodium-ion batteries. Energy Storage Mater. 2021, 36, 10–30. [Google Scholar] [CrossRef]
- Bhargav, P.B.; Mohan, V.M.; Sharma, A.K.; Rao, V.V. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications. J. Appl. Polym. Sci. 2008, 108, 510–517. [Google Scholar] [CrossRef]
- Sasikumar, M.; Jagadeesan, A.; Raja, M.; Krishna, R.H.; Sivakumar, P. The effects of PVAc on surface morphological and electrochemical performance of P(VdF-HFP)-based blend solid polymer electrolytes for lithium ion-battery applications. Ionics 2019, 25, 2171–2181. [Google Scholar]
- Navaratnam, S.; Rahman, N.A.A.; Idris, N.A.; Abidin, S.Z.Z. The Effect of Glycerol on Na + Ion Conductivity and Dielectric Properties of Potato Starch-Chitosan Blend Biopolymer Electrolyte. Int. J. Electroact. Mater 2020, 8, 10–18. [Google Scholar]
- 4 to One Co., L. Seawater Battery Materials. Available online: https://www.4toone.com/modules/catalogue2_product/cg_view.html?cc=1010&p=1&no=5 (accessed on 10 February 2024).
- Kim, J.K.; Mueller, F.; Kim, H.; Bresser, D.; Park, J.S.; Lim, D.H.; Kim, G.T.; Passerini, S.; Kim, Y. Rechargeable-hybrid-seawater fuel cell. NPG Asia Mater. 2014, 6, e144. [Google Scholar] [CrossRef]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.; Rettie, A.J. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Meikhail, M.S.; Asker, N. Synthesis and structural-biological correlation of PVC/PVAc polymer blends. J. Mater. Res. Technol. 2019, 8, 3908–3916. [Google Scholar] [CrossRef]
- Debuigne, A.; Caille, J.R.; Willet, N.; Jérôme, R. Synthesis of Poly(vinyl acetate) and Poly(vinyl alcohol) Containing Block Copolymers by Combination of Cobalt-Mediated Radical Polymerization and ATRP. Macromolecules 2005, 38, 9488–9496. [Google Scholar] [CrossRef]
- Acik, G.; Cansoy, C.E.; Kamaci, M. Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers. Colloid Polym. Sci. 2019, 297, 77–83. [Google Scholar]
- Căprărescu, S.; Modrogan, C.; Purcar, V.; Dăncilă, A.M.; Orbuleț, O.D. Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers 2021, 13, 1875. [Google Scholar] [CrossRef]
- Teixeira, J.S.; Pereira, A.M.; Pereira, C. Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chem. Eng. J. 2021, 426, 131274. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 2004, 58, 641–649. [Google Scholar] [CrossRef]
- Saffirio, S.; Falco, M.; Appetecchi, G.B.; Smeacetto, F.; Gerbaldi, C. Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: Unravelling the effect of diboron trioxide. J. Eur. Ceram. Soc. 2022, 42, 1023–1032. [Google Scholar] [CrossRef]
- Wen, C.; Luo, Z.; Liu, X.; Wu, Y.; Tong, J.; Liang, H.; Zhang, Q.; Ning, T.; Lu, A. Enhanced electrochemical properties of NASICON-type Na3Zr2Si2PO12 solid electrolytes with Tb3+-ions-assisted sintering. Solid State Ionics 2023, 393, 116185. [Google Scholar] [CrossRef]
- Oh, J.A.S.; Xu, X.; Zeng, Z.; Wang, K.; Tan, N.Y.J.; Kok, E.; Huang, J.; Lu, L. Thin NASICON Electrolyte to Realize High Energy Density Solid-State Sodium Metal Battery. Energy Environ. Mater. 2023, 6, e12472. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J.B. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388. [Google Scholar] [PubMed]
- Tsioptsias, C.; Fardis, D.; Ntampou, X.; Tsivintzelis, I.; Panayiotou, C. Thermal Behavior of Poly(vinyl alcohol) in the Form of Physically Crosslinked Film. Polymers 2023, 15, 1843. [Google Scholar] [CrossRef]
- Liu, P.; Chen, W.; Liu, C.; Tian, M.; Liu, P. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci. Rep. 2019, 9, 9534. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Ding, X.; Wang, Y.; Xin, Y.; Singh, .P.; Wu, .F.; Gao, H. The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 2022, 1, 373–395. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, J.; Guo, Y.; Zhu, H.; Huang, X. Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Front. Chem. 2020, 8, 561787. [Google Scholar]
- Akçay, T.; Häringer, M.; Pfeifer, K.; Anhalt, J.; Binder, J.R.; Dsoke, S.; Kramer, D.; Mönig, R. Na3V2(PO4)3-A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 12688–12695. [Google Scholar]
- Luo, S.H.; Li, J.Y.; Bao, S.; Liu, Y.Y.; Wang, Z. Na3V2(PO4)3/C Composite Prepared by Sol-Gel Method as Cathode for Sodium Ion Batteries. J. Electrochem. Soc. 2018, 165, A1460–A1465. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Wang, F.; Noori, A.; Mousavi, M.F.; Xia, X.; Zhang, Y. Recent Advances in Carbon Anodes for Sodium-Ion Batteries. Chem. Rec. 2022, 22, e202200083. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, W.; Zhang, Q.; Qiu, L.; Zhou, M.; Lu, S.; Tao, B.; Wang, X.; Xie, Q.; Ruan, Y. Facile synthesis of pure Na3V2(PO4)3 powder via a two-stage carbothermal reduction strategy. J. Sol-Gel Sci. Technol. 2022, 103, 205–213. [Google Scholar] [CrossRef]
- Gamry Instruments, Warminster, USA Physical Electrochemistry & Equivalent Circuit Elements, Part 2. Available online: https://www.gamry.com/assets/White-Papers/The-Basics-of-EIS-Part-2-2.pdf (accessed on 4 April 2024).
Wetting Agent | Total Resistance () | Ionic Conductivity (mS cm−1) |
---|---|---|
Pristine NZSP | ||
Pure PVAc | 192.65 | |
Pure PVA | 83.39 | |
PVAc-based glue | 31.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgueiro, T.A.; Veloso, R.C.; Ventura, J.; Danzi, F.; Oliveira, J. Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers. Batteries 2024, 10, 157. https://doi.org/10.3390/batteries10050157
Salgueiro TA, Veloso RC, Ventura J, Danzi F, Oliveira J. Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers. Batteries. 2024; 10(5):157. https://doi.org/10.3390/batteries10050157
Chicago/Turabian StyleSalgueiro, Tiago Afonso, Rita Carvalho Veloso, João Ventura, Federico Danzi, and Joana Oliveira. 2024. "Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers" Batteries 10, no. 5: 157. https://doi.org/10.3390/batteries10050157
APA StyleSalgueiro, T. A., Veloso, R. C., Ventura, J., Danzi, F., & Oliveira, J. (2024). Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers. Batteries, 10(5), 157. https://doi.org/10.3390/batteries10050157