Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical–Chemical Results
3.2. Electrochemical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Y.; Yang, S.; Shao, J.; Guo, Z. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340. [Google Scholar]
- Kim, H.; Kim, D.I.; Yoon, W.S. Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries. J. Electrochem. Sci. Technol. 2022, 13, 32–53. [Google Scholar] [CrossRef]
- Mu, J.J.; Liu, Z.M.; Lai, Q.S.; Wang, D.; Gao, X.W.; Yang, D.R.; Chen, H.; Luo, W.B. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors. Energy Mater 2022, 2, 200043. [Google Scholar] [CrossRef]
- Chen, T.; Ouyang, B.; Fan, X.; Zhou, W.; Liu, W.; Liu, K. Oxide cathodes for sodium-ion batteries: Designs, challenges, and perspectives. Carbon Energy 2022, 4, 170–199. [Google Scholar] [CrossRef]
- Prajapati, A.K.; Bhatnagar, A. A review on anode materials for lithium/sodium-ion batteries. J. Energy Chem. 2023, 83, 509–540. [Google Scholar] [CrossRef]
- Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S.X. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700622. [Google Scholar] [CrossRef]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef]
- Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a green and high-capacity anode material for lithium-ion batteries: A review. Appl. Sci. 2021, 11, 11713. [Google Scholar] [CrossRef]
- Ambrosetti, M.; Bini, M. The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review. Molecules 2022, 27, 8484. [Google Scholar] [CrossRef]
- Fang, L.; Bahlawane, N.; Sun, W.; Pan, H.; Xu, B.B.; Yan, M.; Jiang, Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. Small 2021, 17, 2101137. [Google Scholar] [CrossRef]
- Karuppiah, D.; Palanisamy, R.; Rengapillai, S.; Ponnaiah, A.; Marimuthu, S. Effect of Tungsten and Carbon in Germanium Oxide as a High-Performance Electrode for Energy Storage Applications. ACS Appl. Energy Mater. 2021, 4, 9692–9700. [Google Scholar] [CrossRef]
- Quinzeni, I.; Berbenni, V.; Capsoni, D.; Bini, M. Ca- and Al-doped ZnFe2O4 nanoparticles as possible anode materials. J. Solid State Electrochem. 2018, 22, 2013–2024. [Google Scholar] [CrossRef]
- Subramanian, Y.; Park, M.S.; Kumar, V.G.; Lee, Y.S.; Kim, D.W. Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries. J. Electrochem. Sci. Technol. 2017, 8, 323–330. [Google Scholar]
- Jin, S.; Wang, C. Synthesis and first investigation of excellent lithium storage performances of Fe2GeO4/reduced graphene oxide nanocomposite. Nano Energy 2014, 7, 63–71. [Google Scholar] [CrossRef]
- Subramanian, Y.; Park, M.S.; Veerasubramani, G.K.; Lee, Y.S.; Kim, D.W. Synthesis and electrochemical performance of carbon-coated Fe2GeO4 as an anode material for sodium-ion batteries. Mat. Chem. Phys. 2019, 224, 129–136. [Google Scholar] [CrossRef]
- Han, J.; Qin, J.; Guo, L.; Qin, K.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; He, C. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries. Appl. Surf. Sci. 2018, 427, 670–679. [Google Scholar] [CrossRef]
- Welch, M.D.; Cooper, M.A.; Hawthorne, F.C. The crystal structure of brunogeierite, Fe2GeO4 spinel. Mineral. Mag. 2001, 65, 441–444. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst. 1976, A32, 751. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Xing, Y.; Song, S.; Yu, S.; Shi, W.; Guo, X.; Yang, J.; Lei, Y.; Cao, F. Morphology-Controlled Synthesis of Magnetites with Nanoporous Structures and Excellent Magnetic Properties. Chem. Mater. 2008, 20, 198–204. [Google Scholar] [CrossRef]
- Choi, H.; Surendran, S.; Kim, D.; Lim, Y.; Lim, J.; Park, J.; Kim, J.K.; Han, M.K.; Sim, U. Boosting eco-friendly hydrogen generation by urea-assisted water electrolysis using spinel M2GeO4 (M = Fe, Co) as an active electrocatalyst. Environ. Sci. Nano 2021, 8, 3110–3121. [Google Scholar] [CrossRef]
- Kozawa, A.; Kalnoki-Kis, T.; Yeager, J.F. Solubilities of Mn(II) and Mn(III) Ions in Concentrated Alkaline Solutions. J. Electrochem. Soc. 1966, 113, 405. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597. [Google Scholar] [CrossRef]
GFO | GFO-Mn5 | GFO-Mn10 | GFO-C | GFO-Mn5-C | GFO-Mn10-C | |
---|---|---|---|---|---|---|
a/Å | 8.4016 (1) | 8.3874 (2) | 8.4000 (4) | 8.3928 (12) | 8.3931 (10) | 8.3889 (9) |
Cry size (nm) | 55.8 (3) | 34.3 (2) | 32.3 (4) | 40.4(2) | 39.0 (2) | 30.0 (2) |
x(O) | 0.249 (8) | 0.249 (8) | 0.251 (7) | 0.249 (12) | 0.249 (9) | 0.251 (9) |
Rwp/GoF | 12/1.5 | 11/1.4 | 11/1.4 | 15/1.8 | 16/1.9 | 14/1.7 |
Samples | Fe/Ge Stoichiometric | Fe/Ge from EDS | % Mn Stoichiometric | % Mn from EDS |
---|---|---|---|---|
GFO | 3 | 2.60 | - | - |
GFO-Mn5 | 3 | 3.09 | 5 | 3.37 |
GFO-Mn10 | 3 | 2.87 | 10 | 6.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosetti, M.; Rocchetta, W.; Quinzeni, I.; Milanese, C.; Berbenni, V.; Bini, M. Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries. Batteries 2024, 10, 48. https://doi.org/10.3390/batteries10020048
Ambrosetti M, Rocchetta W, Quinzeni I, Milanese C, Berbenni V, Bini M. Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries. Batteries. 2024; 10(2):48. https://doi.org/10.3390/batteries10020048
Chicago/Turabian StyleAmbrosetti, Marco, Walter Rocchetta, Irene Quinzeni, Chiara Milanese, Vittorio Berbenni, and Marcella Bini. 2024. "Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries" Batteries 10, no. 2: 48. https://doi.org/10.3390/batteries10020048
APA StyleAmbrosetti, M., Rocchetta, W., Quinzeni, I., Milanese, C., Berbenni, V., & Bini, M. (2024). Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries. Batteries, 10(2), 48. https://doi.org/10.3390/batteries10020048