Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation and Characterization of Co-RM Catalyst
2.3. OFL Degradation Experiment
2.4. Degradation Product Analysis
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Removal Rate of OFL in Different Reaction Systems
3.3. Analysis of Influencing Factors of OFL Degradation Experiment
3.3.1. Effect of PDS Dosage on OFL Removal Rate
3.3.2. Effect of Co-RM Dosage on OFL Removal Rate
3.3.3. Effect of Initial OFL Concentration on OFL Removal Rate
3.3.4. Effect of Temperature on OFL Removal Rate
3.3.5. Effect of pH on OFL Removal Rate
3.4. Analysis of OFL Degradation Pathway
3.5. Analysis of Co-RM Activated PDS Defluorination Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawash, H.B.; Moneer, A.A.; Galhoum, A.A.; Elgarahy, A.M.; Mohamed, W.A.A.; Samy, M.; El-Seedi, H.R.; Gaballah, M.S.; Mubarak, M.F.; Attia, N.F. Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. J. Water Process Eng. 2023, 52, 103490. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, H.-Y.; Li, Z.-H.; Zhu, J.-Y.; Bai, J.-W.; Shao, Y.-F.; Lin, C.-C.; Guan, C.-Y. Magnetic pyro-hydrochar derived from waste cartons as an efficient activator of peroxymonosulfate for antibiotic dissipation. Sep. Purif. Technol. 2023, 311, 123288. [Google Scholar] [CrossRef]
- Li, T.; Lu, S.; Lin, W.; Ren, H.; Zhou, R. Heat-activated persulfate oxidative degradation of ofloxacin: Kinetics, mechanisms, and toxicity assessment. Chem. Eng. J. 2022, 433, 133801. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.-Y.; Bai, J.-W.; Lin, L.-F.; Yu, C.-P. The ability of pre-magnetized zero-valent iron for peroxymonosulfate activation to remove ofloxacin. Chem. Eng. J. 2023, 461, 141825. [Google Scholar] [CrossRef]
- Maged, A.; Elgarahy, A.M.; Haneklaus, N.H.; Gupta, A.K.; Show, P.L.; Bhatnagar, A. Sustainable functionalized smectitic clay-based nano hydrated zirconium oxides for enhanced levofloxacin sorption from aqueous medium. J. Hazard. Mater. 2023, 452, 131325. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Wu, S.; Hu, H.; Lin, Y.; Zhang, J.; Hu, Y.H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chang, J.; Fu, B.; Wang, H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. Sci. Total Environ. 2023, 857 Pt 2, 159172. [Google Scholar] [CrossRef]
- Sun, Y.; Li, D.; Zhou, S.; Shah, K.J.; Xiao, X. Research Progress of Advanced Oxidation. Water Treat. Technol. 2021, 102, 1–47. [Google Scholar]
- Wang, L.; Yang, H.; Guo, M.; Wang, Z.; Zheng, X. Adsorption of antibiotics on different microplastics (MPs): Behavior and mechanism. Sci. Total Environ. 2023, 863, 161022. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Chen, Y.; Wang, M.; Wu, Q.; Srinivas, K.; Yu, B.; Zhang, X.; Ma, F.; Zhang, W. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. J. Mater. Sci. Technol. 2022, 105, 266–273. [Google Scholar] [CrossRef]
- Mathur, P.; Sanyal, D.; Callahan, D.L.; Conlan, X.A.; Pfeffer, F.M. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environment and human health. Environ. Pollut. 2021, 291, 118233. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Sci. Total Environ. 2022, 838 Pt 1, 156010. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cai, Y.; Fan, S.; Meng, T.; Zhang, Y.; Li, X.; Zhang, Y. Hydroxyl radicals can significantly influence the toxicity of ofloxacin transformation products during ozonation. J. Hazard. Mater. 2022, 438, 129503. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.S. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2022, 311 Pt 2, 136977. [Google Scholar] [CrossRef]
- Wang, H.; Mustafa, M.; Yu, G.; Ostman, M.; Cheng, Y.; Wang, Y.; Tysklind, M. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere 2019, 235, 575–585. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Lan, M.-Y.; Wang, F.; Wang, C.-C.; Wang, P.; Ge, C.; Liu, W. Immobilized N-C/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: From batch to continuous process. Chem. Eng. J. 2022, 450, 138082. [Google Scholar] [CrossRef]
- Ji, J.; Yuan, X.; Zhao, Y.; Jiang, L.; Wang, H. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar. J. Hazard. Mater. 2022, 430, 128375. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Feng, X.; Tao, T. Degradation of organics using LaFeO3 as a persulfate activator under low-intensity ultra-violet-light irradiation: Catalytic performance and mechanism. J. Rare Earths 2022, 40, 1043–1052. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Y.; Wang, X.; Ji, Q.; Li, T.; He, H.; Song, H.; Yang, S.; Li, S.; Yan, S.; et al. Identifying the role of oxygen vacancy on cobalt-based perovskites towards peroxymonosulfate activation for efficient iohexol degradation. Appl. Catal. B Environ. 2022, 319, 121901. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, J.; Feng, X.; Cai, W. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. J. Hazard. Mater. 2020, 392, 122315. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wei, G.; Zhu, Y.; Lu, C.; Zhang, L.; Huang, Z.; Su, Q.; Pan, S. Photoelectric activation of persulfate with a new type of red mud-based CuFe2O4 particle electrode for the efficient degradation of ciprofloxacin: Preparation, influencing factors and mechanism. J. Environ. Chem. Eng. 2023, 11, 109137. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Yang, J.; Wang, C. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. J. Clean. Prod. 2022, 375, 134118. [Google Scholar] [CrossRef]
- Xiao, R.; Luo, Z.; Wei, Z.; Luo, S.; Spinney, R.; Yang, W.; Dionysiou, D.D. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 2018, 19, 51–58. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Wang, H.; Song, H. Co-pyrolysis route of chlorella sp. and bauxite tailings to fabricate metal-biochar as persulfate activator. Chem. Eng. J. 2022, 428, 132578. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, Q.; Nan, T.; Zhou, M.; Xia, Y.; Hu, G.; Zheng, Q.; Wu, Y.; Bian, T.; Wei, T.; et al. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives. J. Alloys Compd. 2023, 958, 170370. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Li, Z.; Wang, C. Pb2+ and Cr3+ immobilization efficiency and mechanism in red-mud-based geopolymer grouts. Chemosphere 2023, 321, 138129. [Google Scholar] [CrossRef]
- Zakira, U.; Zheng, K.; Xie, N.; Birgisson, B. Development of high-strength geopolymers from red mud and blast furnace slag. J. Clean. Prod. 2023, 383, 135439. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Liu, Z. Red mud-based catalysts for the catalytic removal of typical air pollutants: A review. J. Environ. Sci. 2023, 127, 628–640. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; He, F.; Gao, P.; Yuan, S. Characteristic, hazard and iron recovery technology of red mud—A critical review. J. Hazard. Mater. 2021, 420, 126542. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Li, J.; Wang, B.; Li, Y. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light. Appl. Catal. B Environ. 2022, 318, 121820. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Xu, Z.; Ma, H.; Guo, Y. Mechanism study on manganese(II) removal from acid mine wastewater using red mud and its application to a lab-scale column. J. Clean. Prod. 2020, 253, 119955. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Song, L.; Nan, J.; Liu, B.; Wu, F. Novel three-dimensional Ti3C2-MXene embedded zirconium alginate aerogel adsorbent for efficient phosphate removal in water. Chemosphere 2023, 319, 138016. [Google Scholar] [CrossRef] [PubMed]
- Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl. Surf. Sci. 2012, 261, 75–82. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, F.; Huang, J.; Man, R. Ethylene glycol dimethacrylate modified hyper-cross-linked resins: Porogen effect on pore structure and adsorption performance. Chem. Eng. J. 2018, 339, 278–287. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, X.; Wang, Q.; Zheng, J.; Zhang, S.; Hu, T.; Meng, C. Hydrothermal synthesis and electrochemical properties of hierarchical vanadyl hydroxide spheres with hollow core and mesoporous shell. Microporous Mesoporous Mater. 2017, 249, 137–145. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Hu, X.; Wu, Y.; Tang, X.; He, Q.; Peng, S. Enhanced selective adsorption of lead(II) from complex wastewater by DTPA functionalized chitosan-coated magnetic silica nanoparticles based on anion-synergism. J. Hazard. Mater. 2022, 422, 126856. [Google Scholar] [CrossRef] [PubMed]
- Ioannidi, A.; Oulego, P.; Collado, S.; Petala, A.; Arniella, V.; Frontistis, Z.; Angelopoulos, G.N.; Diaz, M.; Mantzavinos, D. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. J. Environ. Manag. 2020, 270, 110820. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhu, C.; Yuan, Y.; Yue, C.; Ling, C.; Liu, F.; Li, A. Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons for superfast degradation of sulfamethazine. Chem. Eng. J. 2020, 384, 123302. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.; Parakh, P.; Prakash, H. Degradation of Malachite green by Potassium persulphate, its enhancement by 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane nickel(II) perchlorate complex, and removal of antibacterial activity. J. Hazard. Mater. 2012, 213–214, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, G.; Li, N.; Lu, X.; Zhao, J.; He, M.; Yan, B.; Zhang, H.; Duan, X.; Wang, S. Landfill leachate treatment by persulphate related advanced oxidation technologies. J. Hazard. Mater. 2021, 418, 126355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, Y.; Yang, Y.; Qiu, B.; Li, H. Vacancies-rich MOFs-derived magnetic CoFe encapsulated in N-doped carbon nanotubes as peroxymonosulfate activator for p-arsanilic acid removal. Chem. Eng. J. 2023, 454, 140474. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Z.; Song, L.; Cao, D.; Zhou, S.; Gao, T.; Shang, J.; Cheng, X. Eggshell supported Cu doped FeOx magnetic nanoparticles as peroxymonosulfate activator for carbamazepine degradation. Chem. Eng. J. 2023, 454, 140282. [Google Scholar] [CrossRef]
- Othman, I.; Hisham Zain, J.; Abu Haija, M.; Banat, F. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Appl. Catal. B Environ. 2020, 266, 118601. [Google Scholar] [CrossRef]
- Sun, X.; He, K.; Chen, Z.; Yuan, H.; Guo, F.; Shi, W. Construction of visible-light-response photocatalysis-self-Fenton system for the efficient degradation of amoxicillin based on industrial waste red mud/CdS S-scheme heterojunction. Sep. Purif. Technol. 2023, 324, 124600. [Google Scholar] [CrossRef]
- Liu, F.; Yi, P.; Wang, X.; Gao, H.; Zhang, H. Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process. Sep. Purif. Technol. 2018, 194, 181–187. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Gou, G.; Li, N.; Li, L.; He, Y.; Liu, C.; Lai, B.; Sun, H. Dispersed cobalt embedded nitrogen-rich carbon framework activates peroxymonosulfate for carbamazepine degradation: Cobalt leaching restriction and mechanism investigation. Chemosphere 2023, 321, 138026. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, D.; Zhang, H.; Luo, K.H.; Li, C. Fabrication of Z-scheme Bi7O9I3/g-C3N4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (VI) and organic pollutants. J. Hazard. Mater. 2023, 446, 130663. [Google Scholar] [CrossRef]
- He, Y.; Qian, J.; Wang, P.; Wu, J.; Lu, B.; Tang, S.; Gao, P. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chem. Eng. J. 2022, 431, 133933. [Google Scholar] [CrossRef]
- Cao, T.; Xu, J.; Chen, M. Construction of 2D/0D direct Z-scheme Bi4O5I2/Bi3TaO7 heterojunction photocatalysts with enhanced activity for levofloxacin degradation under visible light irradiation. Sep. Purif. Technol. 2022, 291, 120896. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Zhang, X.; Li, B.; Guo, R.; Cheng, Q.; Cheng, X. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem. Eng. J. 2019, 360, 848–860. [Google Scholar] [CrossRef]
- Lei, J.; Chen, B.; Zhou, L.; Ding, N.; Cai, Z.; Wang, L.; In, S.-I.; Cui, C.; Zhou, Y.; Liu, Y.; et al. Efficient degradation of antibiotics in different water matrices through the photocatalysis of inverse opal K-g-C3N4: Insights into mechanism and assessment of antibacterial activity. Chem. Eng. J. 2020, 400, 125902. [Google Scholar] [CrossRef]
- Gao, Y.; Zou, D. Efficient degradation of levofloxacin by a microwave–3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity. Chem. Eng. J. 2020, 393, 124795. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Cai, W. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin. Sci. Total Environ. 2019, 696, 133962. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 2022, 428, 131158. [Google Scholar] [CrossRef]
- Sun, H.; Qin, P.; Wu, Z.; Liao, C.; Guo, J.; Luo, S.; Chai, Y. Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: Mechanistic insight and degradation pathways. J. Alloys Compd. 2020, 834, 155211. [Google Scholar] [CrossRef]
- Pang, Y.; Zhou, J.; Yang, X.; Lan, Y.; Chen, C. Rationally designed Co3O4-SnO2 activated peroxymonosulfate for the elimination of chloramphenicol. Chem. Eng. J. 2021, 418, 129401. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Salas, A.H.; Al-Harbi, N.; Basfer, N.M.; Nassr, D.I. Determination of chemical kinetic parameters in Arrhenius equation of constant heating rate: Theoretical method. Alex. Eng. J. 2023, 67, 461–472. [Google Scholar] [CrossRef]
Composition | CaO | Al2O3 | SiO2 | Na2O | TiO2 | Fe2O3 |
---|---|---|---|---|---|---|
Content (wt%) | 4.12 | 30.13 | 34.55 | 14.51 | 4.46 | 12.23 |
Sample | BET Surface Aera (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter a (nm) | Average Pore Diameter b (nm) |
---|---|---|---|---|
RM | 215.65 | 0.41 | 9.07 | 8.64 |
Co-RM | 431.22 | 0.75 | 12.65 | 11.77 |
Kinetic Equation | Fitting Equation | Temperature (°C) | K (min−1) | R2 | r |
---|---|---|---|---|---|
y = a + bx | 20 | 0.0060 | 0.9809 | −0.9914 | |
30 | 0.0079 | 0.9651 | −0.9842 | ||
40 | 0.0102 | 0.9182 | −0.9625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Sun, W.; Shah, K.J.; Sun, Y. Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin. Magnetochemistry 2023, 9, 203. https://doi.org/10.3390/magnetochemistry9080203
Wu Q, Sun W, Shah KJ, Sun Y. Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin. Magnetochemistry. 2023; 9(8):203. https://doi.org/10.3390/magnetochemistry9080203
Chicago/Turabian StyleWu, Qu, Wenquan Sun, Kinjal J. Shah, and Yongjun Sun. 2023. "Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin" Magnetochemistry 9, no. 8: 203. https://doi.org/10.3390/magnetochemistry9080203
APA StyleWu, Q., Sun, W., Shah, K. J., & Sun, Y. (2023). Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin. Magnetochemistry, 9(8), 203. https://doi.org/10.3390/magnetochemistry9080203