Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3
Abstract
1. Introduction
2. Experimental Part
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, K.K. (Ed.) Properties of Lithium Niobate. In EMIS Datareviews Series No 28; Institution of Engineering and Technology: Stevenage, UK, 2002. [Google Scholar]
- Adachi, M.; Akishige, Y.; Asahi, T.; Deguchi, K.; Gesi, K.; Hasebe, K.; Hikita, T.; Ikeda, T.; Iwata, Y.; Komukae, M.; et al. LiNbO3. In Landolt-Börnstein—Group III Condensed Matter; Shiozaki, Y., Nakamura, E., Mitsui, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 36A2. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Dena, O.; Fierro-Ruiz, C.D.; Villalobos-Mendoza, S.D.; Carrillo Flores, D.M.; Elizalde-Galindo, J.T.; Farías, R. Lithium Niobate Single Crystals and Powders Reviewed—Part I. Crystals 2020, 10, 973. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Villalobos-Mendoza, S.D.; Farías, R.; Fierro-Ruiz, C.D. Lithium Niobate Single Crystals and Powders Reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Song, C.; Wang, C.; Liu, X.; Zeng, F.; Pan, F. Room Temperature Ferromagnetism in Cobalt-Doped LiNbO3 Single Crystalline Films. Cryst. Growth Des. 2009, 9, 1235–1239. [Google Scholar] [CrossRef]
- Ye, J.; Sun, X.; Wu, Z.; Liu, J.; An, Y. Evidence of the Oxygen Vacancies-Induced Room Temperature Ferromagnetism in Multiferroic Co-Doped LiNbO3 Films. J. Alloy. Compd. 2018, 768, 750–755. [Google Scholar] [CrossRef]
- Algueró, M.; Gregg, J.M.; Mitoseriu, L. (Eds.) Nanoscale Ferroelectrics and Multiferroics; Wiley: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Khomskii, D. Classifying Multiferroics: Mechanisms and Effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Wang, J. (Ed.) Multiferroic Materials: Properties, Techniques, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Hill, N.A. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in Magnetoelectric Multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Pascual-Gonzalez, C.; Schileo, G.; Feteira, A. Single-Phase, Composite and Laminate Multiferroics. Magn. Ferroelectr. Multiferroic Met. Oxides 2018, 457–484. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, Y.; Nan, C.-W. Multiferroic Magnetoelectric Composite Nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Khaibullin, I.B. Fabrication of Metal Nanoparticles in Sapphire by Low-energy Ion Implantation. Rev. Adv. Mater. Sci. 2005, 9, 109–129. [Google Scholar]
- Ryssel, H.; Ruge, I. Ionenimplantation; Teubner: Stuttgart, Germany, 1978; 366p. [Google Scholar]
- Chen, F.; Amekura, H.; Jia, Y. Ion Irradiation of Dielectrics for Photonic Applications; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Khaibullin, R.I. Optics of Metal Nanoparticles Fabricated in Organic Matrix by Ion Implantation. Rev. Adv. Mater. Sci. 2004, 7, 108–125. [Google Scholar]
- Kazan, S.; Mikailzade, F.A.; Şale, A.G.; Maksutoğlu, M.; Acikgoz, M.; Khaibullin, R.I.; Khalitov, N.I.; Gatiiatova, J.I.; Valeev, V.F. Magnetic Properties of Co-implanted BaTiO3 Perovskite Crystal. Phys. Rev. B 2010, 82, 054402. [Google Scholar] [CrossRef]
- Thackery, P.A.; Nelson, R.S. The Formation of Precipitate Phases in Aluminium by Ion Implantation. Philos. Mag. 1969, 19, 169–180. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhang, X.; Shen, Y.; Liu, C. Synthesis, Thermal Evolution and Optical Properties of CuZn Alloy Nanoparticles in SiO2 Sequentially Implanted with Dual Ions. J. Alloy. Compd. 2013, 549, 231–237. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Wang, G.; Sun, Y.; Liu, C. Enhanced Nonlinear Optical Properties of LiNbO3 Crystal Embedded with CuZn Alloy Nanoparticles by Ion Implantation. J. Alloys Compd. 2019, 778, 691–698. [Google Scholar] [CrossRef]
- Song, C.; Zeng, F.; Shen, Y.X.; Geng, K.W.; Xie, Y.N.; Wu, Z.Y.; Pan, F. Local Co Structure and Ferromagnetism in Ion-Implanted Co-Doped LiNbO3. Phys. Rev. B 2006, 73, 172412. [Google Scholar] [CrossRef]
- Li, S.; Li, D.; Li, S.; Wang, G.; Sun, X.; Xu, L.; Yuan, H. Local Structure and Room Ferromagnetism of Fe-Doped LiNbO3 Films. J. Supercond. Nov. Magn. 2022, 35, 2897–2902. [Google Scholar] [CrossRef]
- Sheng, P.; Zeng, F.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C. Structure and Ferromagnetism in Vanadium-Doped LiNbO3. J. Appl. Phys. 2012, 112, 033913. [Google Scholar] [CrossRef]
- White, C.W.; McHargue, C.J.; Sklad, P.S.; Boatner, L.A.; Farlow, G.C. Ion Implantation and Annealing of Crystalline Oxides. Mater. Sci. Rep. 1989, 4, 41–146. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, E.; Lao, X.; Wang, Y.; Yuan, H. Oxygen Vacancy Mediated Room Temperature Ferromagnetism in Cu-Doped LiNbO3 Thin Films. J. Magn. Magn. Mater. 2021, 527, 167775. [Google Scholar] [CrossRef]
- Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. Electronic Structure and Magnetism of Fe-Doped LiNbO3. Mater. Chem. Phys. 2012, 136, 783–788. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, F.; Li, J.H.; Sheng, P.; Luo, J.T.; Yang, Y.C.; Pan, F.; Zou, Y.; Huang, Y.Y.; Jiang, Z. Strong d–d Electron Interaction Inducing Ferromagnetism in Mn-Doped LiNbO3. Thin Solid Film. 2011, 520, 764–768. [Google Scholar] [CrossRef]
- Zinnatullin, A.L.; Gabbasov, B.F.; Lyadov, N.M.; Yusupov, R.V.; Khaibullin, R.I.; Vagizov, F.G. Endotaxial α-Fe Nanoparticles in the High-Fluence Iron-Implanted Single-Crystal MgO. Crystals 2022, 12, 1095. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Böttger, R.; Heinig, K.-H.; Bischoff, L.; Liedke, B.; Facsko, S. From holes to sponge at irradiated Ge surfaces with increasing ion energy—an effect of defect kinetics? Appl. Phys. A 2013, 113, 53–59. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Farrakhov, B.F.; Fattakhov, Y.V.; Rogov, A.M.; Konovalov, D.A.; Nuzhdin, V.I.; Valeev, V.F. Incoherent-Light Pulse Annealing of Nanoporous Germanium Layers Formed by Ion Implantation. Vacuum 2021, 186, 110060. [Google Scholar] [CrossRef]
- Veis, M.; Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O. Magneto-Optical Spectroscopy of Ferromagnetic Shape-Memory Ni-Mn-Ga Alloy. J. Appl. Phys. 2014, 115, 17A936. [Google Scholar] [CrossRef]
- Öztürk, M.; Demirci, E.; Gürbüz, O.; Güner, S.; Valeev, V.; Vagizov, F.; Khaibullin, R.; Akdoğan, N. Formation of Different Magnetic Phases and High Curie Temperature Ferromagnetism in Fe57-Implanted ZnO Film. J. Magn. Magn. Mater. 2015, 373, 83–85. [Google Scholar] [CrossRef]
- Read, D.A.; Hallam, G.C.; Sahota, M.S.; Mustaffa, A. The Magnetic Properties of Fe-Nb Alloys. Phys. B+C 1977, 86–88, 66–68. [Google Scholar] [CrossRef]
- Paduani, C.; Schaf, J.; Persiano, A.I.C.; Raposo, M.T.; Ardisson, J.D.; Takeuchi, A.Y. Observation of Weak Ferromagnetism in the C14 Laves Phase of the (Fe1−xNix)2Nb System. Phys. Status Solidi 2009, 246, 1362–1365. [Google Scholar] [CrossRef]
- Crook, M.R.; Cywinski, R. Magnetic Transition in Nb1−yFe2+y. J. Magn. Magn. Mater. 1995, 140–144, 71–72. [Google Scholar] [CrossRef]
- Massalski, T.B.; Murray, J.L.; Bennett, L.H.; Baker, H. Binary Alloy Phase Diagrams, 1st ed.; American Society for Metals: Metals Park, OH, USA, 1986; Volume 1, 1100p. [Google Scholar]
- Raposo, M.T.; Ardisson, J.D.; Persiano, A.I.C.; Mansur, R.A. Characterization of Phases in the Fe-Nb System. Hyperfine Interact. 1994, 83, 235–238. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Keune, W.; Date, S.K.; Dézsi, I.; Gonser, U. Mössbauer-effect Study of Co57 and Fe57 Impurities in Ferroelectric LiNbO3. J. Appl. Phys. 1975, 46, 3914–3924. [Google Scholar] [CrossRef]
- Błachowski, A.; Ruebenbauer, K.; Żukrowski, J. Influence of Niobium Impurity on Spin Density in Metallic Iron. Phys. Status Solidi 2005, 242, 3201–3208. [Google Scholar] [CrossRef]
- Drittler, B.; Stefanou, N.; Blügel, S.; Zeller, R.; Dederichs, P.H. Electronic Structure and Magnetic Properties of Dilute Fe Alloys with Transition-Metal Impurities. Phys. Rev. B 1989, 40, 8203–8212. [Google Scholar] [CrossRef] [PubMed]
- Balogh, J.; Bujdosó, L.; Horváth, Z.E.; Kaptás, D.; Kiss, L.F.; Nakanishi, A.; Sajti, S.; Szilágyi, E. Alloy Formation at the Fe-on-Nb and Nb-on-Fe Interfaces. Vacuum 2020, 171, 109048. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V. Mössbauer Analysis of the Atom and Magnetic Structure of Alloys; Cambridge International Science Publishing: Cambridge, UK, 2006; 248p. [Google Scholar]
- Matsnev, M.E.; Rusakov, V.S. SpectrRelax: An Application for Mössbauer Spectra Modeling and Fitting. AIP Conf. Proc. 2012, 1489, 178–185. [Google Scholar] [CrossRef]
- Wertheim, G.K. Mössbauer Effect: Principles and Applications; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Ouyang, G.; Tan, X.; Wang, C.X.; Yang, G.W. Solid Solubility Limit in Alloying Nanoparticles. Nanotechnology 2006, 17, 4257–4262. [Google Scholar] [CrossRef]
- Lee, J.-G.; Mori, H. Solid Solubility in Isolated Nanometer-Sized Alloy Particles in the Sn-Pb System. Eur. Phys. J. D 2005, 34, 227–230. [Google Scholar] [CrossRef]
- Tiwari, K.; Manolata Devi, M.; Biswas, K.; Chattopadhyay, K. Phase Transformation Behavior in Nanoalloys. Prog. Mater. Sci. 2021, 121, 100794. [Google Scholar] [CrossRef]
- Plaksin, O.A.; Takeda, Y.; Amekura, H.; Umeda, N.; Kono, K.; Okubo, N.; Kishimoto, N. Optical Monitoring of Nanoparticle Formation during Negative 60keV Cu Ion Implantation into LiNbO3. Appl. Surf. Sci. 2005, 241, 213–217. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Dorofeev, G.A.; Elsukov, E.P. Thermodynamic Modeling of Mechanical Alloying in the Fe–Sn System. Inorg. Mater. 2000, 36, 1228–1234. [Google Scholar] [CrossRef]
- Dirba, I.; Komissinskiy, P.; Gutfleisch, O.; Alff, L. Increased Magnetic Moment Induced by Lattice Expansion from α-Fe to α′-Fe8N. J. Appl. Phys. 2015, 117, 173911. [Google Scholar] [CrossRef]
- Morrish, A.H. The Physical Principles of Magnetism; John Wiley & Sons: Nashville, TN, USA, 2001. [Google Scholar]
- Kuz’min, M.D.; Skokov, K.P.; Jian, H.; Radulov, I.; Gutfleisch, O. Towards High-Performance Permanent Magnets without Rare Earths. J. Phys. Condens. Matter 2014, 26, 064205. [Google Scholar] [CrossRef] [PubMed]
Components | Hyperfine Parameters 1 | Linewidth, mm/s | Relative Area, % | Valence State | ||
---|---|---|---|---|---|---|
δ, mm/s | 2ε, mm/s | <HF>, kOe | ||||
Doublet-I | 0.96(1) | 2.28(2) | - | 0.62(2) | 16(1) | Fe2+ |
Doublet-II | 0.42(1) | 0.81(2) | - | 0.62(3) | 17(1) | Fe3+ |
Magnetically ordered component | 0.03(1) | 0.01(1) | 303(1) | 0.49(1) 2 | 67(1) | Fe0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinnatullin, A.L.; Petrov, A.V.; Yusupov, R.V.; Valeev, V.F.; Khaibullin, R.I.; Vagizov, F.G. Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry 2023, 9, 121. https://doi.org/10.3390/magnetochemistry9050121
Zinnatullin AL, Petrov AV, Yusupov RV, Valeev VF, Khaibullin RI, Vagizov FG. Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry. 2023; 9(5):121. https://doi.org/10.3390/magnetochemistry9050121
Chicago/Turabian StyleZinnatullin, Almaz L., Andrei V. Petrov, Roman V. Yusupov, Valerii F. Valeev, Rustam I. Khaibullin, and Farit G. Vagizov. 2023. "Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3" Magnetochemistry 9, no. 5: 121. https://doi.org/10.3390/magnetochemistry9050121
APA StyleZinnatullin, A. L., Petrov, A. V., Yusupov, R. V., Valeev, V. F., Khaibullin, R. I., & Vagizov, F. G. (2023). Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry, 9(5), 121. https://doi.org/10.3390/magnetochemistry9050121