Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Bukharaev, A.A.; Zvezdin, A.K.; Pyatakov, A.P.; Fetisov, Y.K. Straintronics: A new trend in micro- and nanoelectronics and material science. Phys. Uspekhi 2018, 61, 1175. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Zvezdin, A.K. Magnetoelectric and multiferroic media. Phys. Uspekhi 2012, 55, 557. [Google Scholar] [CrossRef]
- Srinivasan, G.; Laletsin, V.M.; Hayes, R.; Puddubnaya, N.; Rasmussen, E.T.; Fekel, D.J. Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate. Solid State Commun. 2002, 124, 373–378. [Google Scholar] [CrossRef]
- Tu, C.; Chu, Z.Q.; Spetzler, B.; Hayes, P.; Dong, C.Z.; Liang, X.F.; Chen, H.H.; He, Y.F.; Wei, Y.Y.; Lisenkov, I.; et al. Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials 2019, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Popov, M.A.; Liu, Y.; Safonov, V.L.; Zavislyak, I.V.; Moiseienko, V.; Zhou, P.; Fu, J.; Zhang, W.; Zhang, J.; Qi, Y.; et al. Strong Converse Magnetoelectric Effect in a Composite of Weakly Ferromagnetic Iron Borate and Ferroelectric Lead Zirconate Titanate. Phys. Rev. Appl. 2020, 14, 034039. [Google Scholar] [CrossRef]
- Srinivasan, G.; Priya, S.; Sun, N.X. (Eds.) Composite Magnetoelectrics: Materials, Structures, and Applications; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Waltham, MA, USA, 2015. [Google Scholar]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 2008, 91, 351–358. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Advensed Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef]
- Geng, D.; Yan, Y.; Priya, S.; Wang, Y. Electric Field Control of Magnetic Permeability in Co-Fired Laminate Magnetoelectric Composites: A Phase-Field Study for Voltage Tunable Inductor Applications. Am. Chem. Society. Appl. Mater. Interfaces 2020, 12, 44981–44990. [Google Scholar] [CrossRef]
- Ramesh, R.; Manipatruni, S. Electric field control of magnetism. Proc. R. Soc. A Math. Phys. Eng. Sci. Bull. 2019, 44, 288–294. [Google Scholar] [CrossRef]
- Viehland, D.; Li, J.F.; Yang, Y.; Costanzo, T.; Yourdkhani, A.; Caruntu, G.; Zhou, P.; Zhang, T.; Li, T.; Gupta, A.; et al. Tutorial: Product properties in multiferroic nanocomposites. J. Appl. Physic. 2018, 124, 061101. [Google Scholar] [CrossRef]
- Liu, H.J.; Liang, W.I.; Chu, Y.H.; Zheng, H.; Ramesh, R. Self-assembled vertical heteroepitaxial nanostructures: From growth tofunctionalities. Mater. Res. Soc. Commun. 2014, 4, 31–44. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric materials and devices. APL Mater. 2021, 9, 041114. [Google Scholar] [CrossRef]
- Sun, X.; MacManus-Driscoll, J.L.; Wang, H. Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thinfilms. Annu. Rev. Mater. Res. 2020, 50, 229–253. [Google Scholar] [CrossRef]
- Stognij, A.I.; Novitskii, N.N.; Trukhanov, A.V.; Panina, S.A.; Sharko, A.I.; Serokurova, A.I.; Poddubnaya, N.N.; Ketsko, V.A.; Dyakonov, V.P.; Szymczak, H.; et al. Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. J. Magn. Magn. Mater. 2019, 485, 291–296. [Google Scholar] [CrossRef]
- Stognij, A.I.; Sharko, A.I.; Serokurova, A.I.; Trukhanov, S.V.; Trukhanov, A.V.; Panina, S.A.; Ketsko, A.V.; Dyakonov, V.P.; Szymczak, H.; Vinning, D.A.; et al. Preparation and vinvestigation of the magnetoelectrivc properties in layered cermet structures. Ceram. Int. 2019, 45, 1330–1336. [Google Scholar] [CrossRef]
- Gritsenko, K.; Omelyanchik, A.; Berg, A.; Dzhun, I.; Chechenin, N.; Dikaya, O.; Rodionova, V. Inhomogeneous magnetic field influence on magnetic properties of nife/irmn thin film structures. J. Magn. Magn. Mater. 2019, 475, 763–766. [Google Scholar] [CrossRef]
- Sukovatitsina, E.V.; Samardak, A.S.; Ognev, A.V.; Chebotkevich, L.A.; Mahmoodi, R.; Peighambari, S.M.; Hosseini, M.G.; Nasirpouri, F. Magnetic properties of nickel nanowire arrays patterned by template electrodeposition. Solid State Phenom. 2012, 190, 522–525. [Google Scholar]
- Blythe, H.; Fedosyuk, V.M. An investigation of the electrodeposited inhomogeneous alloyed film Cu0.94Co0.06 by means of SQUID magnetometry. J. Phys. Condens. Matter 1995, 7, 3461–3469. [Google Scholar] [CrossRef]
- Kittel, C. Ferromagnetism and Antiferromagnetism. In Introduction to Solid State Physics, 8th ed.; Johnson, S., Ed.; Wiley: New York, NY, USA, 2005; p. 328. ISBN 978-0-471-68057-4. [Google Scholar]
- Vorobjova, A.I.; Shimanovich, D.L.; Yanushkevich, K.I.; Prischepa, S.L.; Outkina, E.A. Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template. Beilstein J. Nanotechnol. 2016, 7, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
hkl | 2θ | Intensity |
---|---|---|
111 | 44.505 | 100 |
200 | 51.844 | 43 |
220 | 76.366 | 21 |
311 | 92.939 | 20 |
222 | 98.440 | 7 |
Samples | Magnetic Parameters | P↑↑H↑↑h | Change Characteristic | P↑↑H↑→h |
---|---|---|---|---|
El/P | μ (magnetic permeability) | 6.28 | 6.55 | |
χ (magnetic susceptibility) | 13.58 | 13.05 | ||
P/El | μ (magnetic permeability) | 6.94 | 7.13 | |
χ (magnetic susceptibility) | 12.30 | 11.99 | ||
El+H/P | μ (magnetic permeability) | 3.74 | 3.90 | |
χ (magnetic susceptibility) | 22.86 | 21.89 | ||
P/El+H | μ (magnetic permeability) | 3.15 | 3.29 | |
χ (magnetic susceptibility) | 27.10 | 25.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddubnaya, N.; Filippov, D.; Laletin, V.; Aplevich, A.; Yanushkevich, K. Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field. Magnetochemistry 2023, 9, 94. https://doi.org/10.3390/magnetochemistry9040094
Poddubnaya N, Filippov D, Laletin V, Aplevich A, Yanushkevich K. Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field. Magnetochemistry. 2023; 9(4):94. https://doi.org/10.3390/magnetochemistry9040094
Chicago/Turabian StylePoddubnaya, Natalia, Dmitry Filippov, Vladimir Laletin, Aliaksei Aplevich, and Kazimir Yanushkevich. 2023. "Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field" Magnetochemistry 9, no. 4: 94. https://doi.org/10.3390/magnetochemistry9040094
APA StylePoddubnaya, N., Filippov, D., Laletin, V., Aplevich, A., & Yanushkevich, K. (2023). Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field. Magnetochemistry, 9(4), 94. https://doi.org/10.3390/magnetochemistry9040094