Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef] [Green Version]
- Bukharaev, A.A.; Zvezdin, A.K.; Pyatakov, A.P.; Fetisov, Y.K. Straintronics: A new trend in micro- and nanoelectronics and material science. Phys. Uspekhi 2018, 61, 1175. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Zvezdin, A.K. Magnetoelectric and multiferroic media. Phys. Uspekhi 2012, 55, 557. [Google Scholar] [CrossRef]
- Srinivasan, G.; Laletsin, V.M.; Hayes, R.; Puddubnaya, N.; Rasmussen, E.T.; Fekel, D.J. Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate. Solid State Commun. 2002, 124, 373–378. [Google Scholar] [CrossRef]
- Tu, C.; Chu, Z.Q.; Spetzler, B.; Hayes, P.; Dong, C.Z.; Liang, X.F.; Chen, H.H.; He, Y.F.; Wei, Y.Y.; Lisenkov, I.; et al. Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials 2019, 12, 2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Popov, M.A.; Liu, Y.; Safonov, V.L.; Zavislyak, I.V.; Moiseienko, V.; Zhou, P.; Fu, J.; Zhang, W.; Zhang, J.; Qi, Y.; et al. Strong Converse Magnetoelectric Effect in a Composite of Weakly Ferromagnetic Iron Borate and Ferroelectric Lead Zirconate Titanate. Phys. Rev. Appl. 2020, 14, 034039. [Google Scholar] [CrossRef]
- Srinivasan, G.; Priya, S.; Sun, N.X. (Eds.) Composite Magnetoelectrics: Materials, Structures, and Applications; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Waltham, MA, USA, 2015. [Google Scholar]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 2008, 91, 351–358. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Advensed Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef]
- Geng, D.; Yan, Y.; Priya, S.; Wang, Y. Electric Field Control of Magnetic Permeability in Co-Fired Laminate Magnetoelectric Composites: A Phase-Field Study for Voltage Tunable Inductor Applications. Am. Chem. Society. Appl. Mater. Interfaces 2020, 12, 44981–44990. [Google Scholar] [CrossRef]
- Ramesh, R.; Manipatruni, S. Electric field control of magnetism. Proc. R. Soc. A Math. Phys. Eng. Sci. Bull. 2019, 44, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Viehland, D.; Li, J.F.; Yang, Y.; Costanzo, T.; Yourdkhani, A.; Caruntu, G.; Zhou, P.; Zhang, T.; Li, T.; Gupta, A.; et al. Tutorial: Product properties in multiferroic nanocomposites. J. Appl. Physic. 2018, 124, 061101. [Google Scholar] [CrossRef]
- Liu, H.J.; Liang, W.I.; Chu, Y.H.; Zheng, H.; Ramesh, R. Self-assembled vertical heteroepitaxial nanostructures: From growth tofunctionalities. Mater. Res. Soc. Commun. 2014, 4, 31–44. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric materials and devices. APL Mater. 2021, 9, 041114. [Google Scholar] [CrossRef]
- Sun, X.; MacManus-Driscoll, J.L.; Wang, H. Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thinfilms. Annu. Rev. Mater. Res. 2020, 50, 229–253. [Google Scholar] [CrossRef]
- Stognij, A.I.; Novitskii, N.N.; Trukhanov, A.V.; Panina, S.A.; Sharko, A.I.; Serokurova, A.I.; Poddubnaya, N.N.; Ketsko, V.A.; Dyakonov, V.P.; Szymczak, H.; et al. Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. J. Magn. Magn. Mater. 2019, 485, 291–296. [Google Scholar] [CrossRef]
- Stognij, A.I.; Sharko, A.I.; Serokurova, A.I.; Trukhanov, S.V.; Trukhanov, A.V.; Panina, S.A.; Ketsko, A.V.; Dyakonov, V.P.; Szymczak, H.; Vinning, D.A.; et al. Preparation and vinvestigation of the magnetoelectrivc properties in layered cermet structures. Ceram. Int. 2019, 45, 1330–1336. [Google Scholar] [CrossRef]
- Gritsenko, K.; Omelyanchik, A.; Berg, A.; Dzhun, I.; Chechenin, N.; Dikaya, O.; Rodionova, V. Inhomogeneous magnetic field influence on magnetic properties of nife/irmn thin film structures. J. Magn. Magn. Mater. 2019, 475, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Sukovatitsina, E.V.; Samardak, A.S.; Ognev, A.V.; Chebotkevich, L.A.; Mahmoodi, R.; Peighambari, S.M.; Hosseini, M.G.; Nasirpouri, F. Magnetic properties of nickel nanowire arrays patterned by template electrodeposition. Solid State Phenom. 2012, 190, 522–525. [Google Scholar]
- Blythe, H.; Fedosyuk, V.M. An investigation of the electrodeposited inhomogeneous alloyed film Cu0.94Co0.06 by means of SQUID magnetometry. J. Phys. Condens. Matter 1995, 7, 3461–3469. [Google Scholar] [CrossRef]
- Kittel, C. Ferromagnetism and Antiferromagnetism. In Introduction to Solid State Physics, 8th ed.; Johnson, S., Ed.; Wiley: New York, NY, USA, 2005; p. 328. ISBN 978-0-471-68057-4. [Google Scholar]
- Vorobjova, A.I.; Shimanovich, D.L.; Yanushkevich, K.I.; Prischepa, S.L.; Outkina, E.A. Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template. Beilstein J. Nanotechnol. 2016, 7, 1709–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
hkl | 2θ | Intensity |
---|---|---|
111 | 44.505 | 100 |
200 | 51.844 | 43 |
220 | 76.366 | 21 |
311 | 92.939 | 20 |
222 | 98.440 | 7 |
Samples | Magnetic Parameters | P↑↑H↑↑h | Change Characteristic | P↑↑H↑→h |
---|---|---|---|---|
El/P | μ (magnetic permeability) | 6.28 | 6.55 | |
χ (magnetic susceptibility) | 13.58 | 13.05 | ||
P/El | μ (magnetic permeability) | 6.94 | 7.13 | |
χ (magnetic susceptibility) | 12.30 | 11.99 | ||
El+H/P | μ (magnetic permeability) | 3.74 | 3.90 | |
χ (magnetic susceptibility) | 22.86 | 21.89 | ||
P/El+H | μ (magnetic permeability) | 3.15 | 3.29 | |
χ (magnetic susceptibility) | 27.10 | 25.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddubnaya, N.; Filippov, D.; Laletin, V.; Aplevich, A.; Yanushkevich, K. Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field. Magnetochemistry 2023, 9, 94. https://doi.org/10.3390/magnetochemistry9040094
Poddubnaya N, Filippov D, Laletin V, Aplevich A, Yanushkevich K. Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field. Magnetochemistry. 2023; 9(4):94. https://doi.org/10.3390/magnetochemistry9040094
Chicago/Turabian StylePoddubnaya, Natalia, Dmitry Filippov, Vladimir Laletin, Aliaksei Aplevich, and Kazimir Yanushkevich. 2023. "Magnetoelectric Properties of Ni-PZT-Ni Heterostructures Obtained by Electrochemical Deposition of Nickel in an External Magnetic Field" Magnetochemistry 9, no. 4: 94. https://doi.org/10.3390/magnetochemistry9040094