Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Materials
3.2. Preparation of Thin Film and Monolayers
3.3. Electrochemical Measurements
3.4. Exposure to Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strey, H.H.; Podgornik, R.; Rau, D.C.; Parsegian, V.A. DNA-DNA interactions. Curr. Opin. Struct. Biol. 1998, 8, 309–313. [Google Scholar] [CrossRef]
- Qiu, X.; Rau, D.C.; Parsegian, V.A.; Fang, L.T.; Knobler, C.M.; Gelbart, W.M. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage λ Reflect Relative Importance of DNA Self-Repulsion and Bending Energies. Phys. Rev. Lett. 2011, 106, 028102. [Google Scholar] [CrossRef] [Green Version]
- Maffeo, C.; Schöpflin, R.; Brutzer, H.; Stehr, R.; Aksimentiev, A.; Wedemann, G.; Seidel, R. DNA–DNA Interactions in Tight Supercoils Are Described by a Small Effective Charge Density. Phys. Rev. Lett. 2010, 105, 158101. [Google Scholar] [CrossRef] [PubMed]
- Stingele, J.; Bellelli, R.; Boulton, S.J. Mechanisms of DNA–protein crosslink repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Graupner, A.; Eide, D.M.; Instanes, C.; Andersen, J.M.; Brede, D.A.; Dertinger, S.D.; Lind, O.C.; Brandt-Kjelsen, A.; Bjerke, H.; Salbu, B.; et al. Gamma radiation at a human relevant low dose rate is genotoxic in mice. Sci. Rep. 2016, 6, 32977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J.F. Radiation Mutagenesis: The Initial DNA Lesions Responsible. Radiat. Res. 1995, 142, 362. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Richa; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. J. Nucleic Acids 2010, 2010, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Sommer, M.; Achenbach, S.; Anders, K.; Lell, M.; Löbrich, M.; Uder, M.; Kuefner, M.A. X-ray induced DNA double-strand breaks in coronary CT angiography: Comparison of sequential, low-pitch helical and high-pitch helical data acquisition. Eur. J. Radiol. 2012, 81, e357–e362. [Google Scholar] [CrossRef]
- Mavragani, I.V.; Nikitaki, Z.; Souli, M.P.; Aziz, A.; Nowsheen, S.; Aziz, K.; Rogakou, E.; Georgakilas, A.G. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers 2017, 9, 91. [Google Scholar] [CrossRef]
- Beratan, D.N. Why Are DNA and Protein Electron Transfer so Different? Annu. Rev. Phys. Chem. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Kubař, T.; Elstner, M. What Governs the Charge Transfer in DNA? The Role of DNA Conformation and Environment. J. Phys. Chem. B 2008, 112, 8788–8798. [Google Scholar] [CrossRef]
- Gohler, B.; Hamelbeck, V.; Markus, T.Z.; Kettner, M.; Hanne, G.F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin Selectivity in Electron Transmission through Self-Assembled Monolayers of Double-Stranded DNA. Science 2011, 331, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Markus, T.Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl. Acad. Sci. USA 2013, 110, 14872–14876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kettner, M.; Göhler, B.; Zacharias, H.; Mishra, D.; Kiran, V.; Naaman, R.; Fontanesi, C.; Waldeck, D.H.; Sęk, S.; Pawłowski, J.; et al. Spin Filtering in Electron Transport through Chiral Oligopeptides. J. Phys. Chem. C 2015, 119, 14542–14547. [Google Scholar] [CrossRef]
- Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019, 3, 250–260. [Google Scholar] [CrossRef]
- Mishra, S.; Mondal, A.K.; Pal, S.; Das, T.K.; Smolinsky, E.Z.B.; Siligardi, G.; Naaman, R. Length-Dependent Electron Spin Polarization in Oligopeptides and DNA. J. Phys. Chem. C 2020, 124, 10776–10782. [Google Scholar] [CrossRef]
- Zwang, T.; Hürlimann, S.; Hill, M.G.; Barton, J.-L.K. Helix-Dependent Spin Filtering through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551–15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Poonia, V.S.; Fontanesi, C.; Naaman, R.; Fleming, A.M.; Burrows, C.J. Effect of Oxidative Damage on Charge and Spin Transport in DNA. J. Am. Chem. Soc. 2019, 141, 123–126. [Google Scholar] [CrossRef]
- Pan, X.; Sanche, L. Mechanism and Site of Attack for Direct Damage to DNA by Low-Energy Electrons. Phys. Rev. Lett. 2005, 94, 198104. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Z.; Sutherland, J.C. Gel electrophoresis method for quantitation of gamma ray induced single-and double-strand breaks in DNA irradiated in vitro. Electrophoresis 1989, 10, 318–326. [Google Scholar] [CrossRef]
- Jain, D.; Narayanan, N.; Nair, D. Plasticity in Repressor-DNA Interactions Neutralizes Loss of Symmetry in Bipartite Operators. J. Biol. Chem. 2016, 291, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, I.; Munns, C.; Dutta, G. An X-ray diffraction (XRD) study of vapor deposited gold thin films on aluminum nitride (A1N) substrates. Thin Solid Films 1997, 304, 229–238. [Google Scholar] [CrossRef]
- Rosenberg, R.A.; Mishra, D.; Naaman, R. Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons. Angew. Chem. Int. Ed. 2015, 54, 7295–7298. [Google Scholar] [CrossRef]
- Patel, M.K.; Solanki, P.R.; Kumar, A.; Khare, S.; Gupta, S.; Malhotra, B.D. Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens. Bioelectron. 2010, 25, 2586–2591. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.K.; Solanki, P.R.; Khandelwal, S.; Agrawal, V.V.; Ansari, S.A.; Malhotra, B.D. Self-assembled monolayer based electrochemical nucleic acid sensor forVibrio choleratedetection. J. Phys. Conf. Ser. 2012, 358, 012009. [Google Scholar] [CrossRef]
- Faure, M.; Pallandre, A.; Chebil, S.; Le Potier, I.; Taverna, M.; Tribollet, B.; Deslouis, C.; Haghiri-Gosnet, A.-M.; Gamby, J. Improved electrochemical detection of a transthyretin synthetic peptide in the nanomolar range with a two-electrode system integrated in a glass/PDMS microchip. Lab Chip 2014, 14, 2800–2805. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Mondal, P.C.; Kantor-Uriel, N.; Mathew, S.P.; Tassinari, F.; Fontanesi, C.; Naaman, R. Chiral conductive polymers as spin filters. Adv. Mater. 2015, 27, 1924–1927. [Google Scholar] [CrossRef]
- Mondal, P.C.; Fontanesi, C.; Waldeck, D.H.; Naaman, R. Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry. ACS Nano 2015, 9, 3377–3384. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Xu, J.; Yang, F.; Gu, Y.; Chen, H.; Wang, Y.; Li, F. Sensitive electrochemical detection of DNA damage based on in situ double strand growth via hybridization chain reaction. Anal. Bioanal. Chem. 2017, 409, 6821–6829. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Jiao, K. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core–shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron. 2009, 25, 668–673. [Google Scholar] [CrossRef]
- Zhang, Q.; Dai, P.; Yang, Z. Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions. Microchim. Acta 2011, 173, 347–352. [Google Scholar] [CrossRef]
- Uttayarat, P.; Tangtong, T.; Sukapirom, K.; Boonsirichai, K. Gamma irradiation induces DNA double-strand breaks in fibroblasts: A model study for the development of biodosimetry. J. Phys. Conf. Ser. 2015, 611, 012030. [Google Scholar] [CrossRef] [Green Version]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. 2013, 25, 578–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikitaki, Z.; Hellweg, C.E.; Georgakilas, A.G.; Ravanat, J.-L. Stress-induced DNA damage biomarkers: Applications and limitations. Front. Chem. 2015, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Macedo, L.J.A.; de Souza, J.C.P.; Lima, F.C.D.A.; Crespilho, F.N. A combined Far-FTIR, FTIR Spectromicroscopy, and DFT Study of the Effect of DNA Binding on the [4Fe4S] Cluster Site in EndoIII. Sci. Rep. 2020, 10, 1931. [Google Scholar] [CrossRef] [Green Version]
- Uosaki, K.; Quayum, M.E.; Nihonyanagi, S.; Kondo, T. Decomposition Processes of an Organic Monolayer Formed on Si(111) via a SiliconCarbon Bond Induced by Exposure to UV Irradiation or Ozone. Langmuir 2004, 20, 1207–1212. [Google Scholar] [CrossRef]
- Sanche, L. Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons. Mass Spectrom. Rev. 2002, 21, 349–369. [Google Scholar] [CrossRef]
- Lipiec, E.; Kowalska, J.; Lekki, J.; Wiecheć, A.; Kwiatek, W. FTIR Microspectroscopy in Studies of DNA Damage Induced by Proton Microbeam in Single PC-3 Cells. Acta Phys. Pol. A 2012, 121, 506–509. [Google Scholar] [CrossRef]
- Pijanka, J.K.; Kohler, A.; Yang, Y.; Dumas, P.; Chio-Srichan, S.; Manfait, M.; Sockalingum, G.D.; Sulé-Suso, J. Spectroscopic signatures of single, isolated cancer cell nuclei using synchrotron infrared microscopy. Analyst 2009, 134, 1176–1181. [Google Scholar] [CrossRef]
- Ricciardi, V.; Portaccio, M.; Manti, L.; Lepore, M. An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells. Appl. Sci. 2020, 10, 2974. [Google Scholar] [CrossRef]
- Hamad, A.M.; Fahmy, H.M.; Elshemey, W.M. FT-IR spectral features of DNA as markers for the detection of liver preservation using irradiation. Radiat. Phys. Chem. 2020, 166, 108522. [Google Scholar] [CrossRef]
- Du, G.-F.; Fu, H.-H.; Wu, R. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. Phys. Rev. B 2020, 102, 035431. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, Y.; Qin, W.; Xie, S.; Qu, F. Chiral-induced spin selectivity: A polaron transport model. Phys. Rev. B 2020, 102, 214303. [Google Scholar] [CrossRef]
- Fransson, J. Vibrational origin of exchange splitting and ”chiral-induced spin selectivity. Phys. Rev. B 2020, 102, 235416. [Google Scholar] [CrossRef]
- Fransson, J. Charge Redistribution and Spin Polarization Driven by Correlation Induced Electron Exchange in Chiral Molecules. Nano Lett. 2021, 21, 3026–3032. [Google Scholar] [CrossRef]
- Bian, X.; Wu, Y.; Teh, H.-H.; Zhou, Z.; Chen, H.-T.; Subotnik, J.E. Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics. J. Chem. Phys. 2021, 154, 110901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangruwa, N.; Srivastava, M.; Mishra, D. Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA. Magnetochemistry 2021, 7, 98. https://doi.org/10.3390/magnetochemistry7070098
Bangruwa N, Srivastava M, Mishra D. Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA. Magnetochemistry. 2021; 7(7):98. https://doi.org/10.3390/magnetochemistry7070098
Chicago/Turabian StyleBangruwa, Neeraj, Manish Srivastava, and Debabrata Mishra. 2021. "Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA" Magnetochemistry 7, no. 7: 98. https://doi.org/10.3390/magnetochemistry7070098
APA StyleBangruwa, N., Srivastava, M., & Mishra, D. (2021). Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA. Magnetochemistry, 7(7), 98. https://doi.org/10.3390/magnetochemistry7070098