Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Origin of the Magnetic Dichorism Effect
3. Applications
3.1. First Studies
3.2. Magnetic Proximity Effects
3.3. Transition Metal Oxides
3.4. Exchange-Bias Systems
3.5. Metallic Thin Films and Multilayers
3.6. Other Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Als-Nielsen, J. Elements of Modern X-ray Physics; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Atwood, D. Soft X-rays and Extreme Ultraviolet Radiation; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; et al. Element specific monolayer depth profiling. Adv. Mater. 2014, 26, 6554–6559. [Google Scholar] [CrossRef]
- Zwiebler, M.; Hamann-Borrero, J.E.; Vafaee, M.; Komissinskiy, P.; Macke, S.; Sutarto, R.; He, F.; Büchner, B.; Sawatzky, G.A.; Alff, L.; et al. Electronic depth profiles with atomic layer resolution from resonant soft X-ray reflectivity. New J. Phys. 2015, 17, 083046. [Google Scholar] [CrossRef] [Green Version]
- Ade, H. Characterization of organic thin films with resonant soft X-ray scattering and reflectivity near the carbon and fluorine absorption edges. Eur. Phys. J. Spec. Top. 2012, 208, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Mezger, M.; Ocko, B.M.; Reichert, H.; Deutsch, M. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity. Proc. Natl. Acad. Sci. USA 2013, 110, 3733–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, L.; Mukherjee, S.; Terzi, F.; Giglia, A.; Mahne, N.; Koshmak, K.; Esaulov, V.; Toccafondi, C.; Canepa, M.; Nannarone, S. Structural and electronic properties of anisotropic ultrathin organic films from dichroic resonant soft X-ray reflectivity. Phys. Rev. B—Condens. Matter Mater. Phys. 2014, 89, 045401. [Google Scholar] [CrossRef]
- Stohr, J.; Siegmann, H.C. Magnetism: From Fundamentals to Nanoscale Dynamics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 152. [Google Scholar]
- Stohr, J. X-ray Magnetic Circular Dichroism: Basic Concepts and Theory for 3D Transition Metal Atoms. In New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Sources; Schlachter, A.S., Wuilleumier, F.J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 221–250. [Google Scholar]
- Mariot, J.-M.; Brouder, C. Spectroscopy and Magnetism: An Introduction. In Magnetism and Synchrotron Radiation; Beaurepaire, E., Scheurer, F., Krill, G., Kappler, J.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 24–59. [Google Scholar]
- Paroli, P. An introduction to magneto-optics. In Magnetic Properties of Matter; Borsa, F., Tognetti, V., Eds.; World Scientific: Singapore, 1988; pp. 335–368. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continous Media; Pergamon Press: Oxford, UK, 1984. [Google Scholar]
- Freiser, M.J. A Survey of Magnetooptic Effects. IEEE Trans. Magn. 1968, 4, 152–161. [Google Scholar] [CrossRef]
- Capelli, R.; Mahne, N.; Koshmak, K.; Giglia, A.; Doyle, B.P.; Mukherjee, S.; Nannarone, S.; Pasquali, L. Quantitative resonant soft X-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au. J. Chem. Phys. 2016, 145, 024201. [Google Scholar] [CrossRef]
- Parratt, L.G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 1954, 95, 359–369. [Google Scholar] [CrossRef]
- Macke, S.; Goering, E. Magnetic reflectometry of heterostructures. J. Phys. Condens. Matter 2014, 26, 363201. [Google Scholar] [CrossRef]
- Yeh, P. Optical Waves in Layered Media; Wiley Series in Pure and Applied Optics; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Zak, J.; Moog, E.R.; Liu, C.; Bader, S.D. Magneto-optics of multilayers with arbitrary magnetization directions. Phys. Rev. B—Condens. Matter Mater. Phys. 1991, 43, 6423–6429. [Google Scholar] [CrossRef]
- Yeh, P. Optics of anisotropic layered media: A new 4 × 4 matrix algebra. Surf. Sci. 1980, 96, 41–53. [Google Scholar] [CrossRef]
- Yariv, A.; Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation; Wiley Series in Pure and Applied Optics; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Zak, J.; Moog, E.R.; Liu, C.; Bader, S.D. Universal approach to magneto-optics. J. Magn. Magn. Mater. 1990, 89, 107–123. [Google Scholar] [CrossRef]
- Yeh, P. Electromagnetic propagation in birefringent layered media. J. Opt. Soc. Am. 1979, 69, 742–756. [Google Scholar] [CrossRef]
- Berreman, D.W. Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation. J. Opt. Soc. Am. 1972, 62, 502. [Google Scholar] [CrossRef]
- Bertrand, P.; Hermann, C.; Lampel, G.; Peretti, J.; Safarov, V.I. General analytical treatment of optics in layered structures: Application to magneto-optics. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 64, 235421. [Google Scholar] [CrossRef]
- Pasquali, L.; Mahne, N.; Giglia, A.; Verna, A.; Sponza, L.; Capelli, R.; Bonfatti, M.; Mezzadri, F.; Galligani, E.; Nannarone, S. Analysis of Resonant Soft X-ray Reflectivity of Anisotropic Layered Materials. Surfaces 2021, 4, 18–30. [Google Scholar] [CrossRef]
- Smith, D.Y. Superconvergence and sum rules for the optical constants: Natural and magneto-optical activity. Phys. Rev. B 1976, 13, 5303–5315. [Google Scholar] [CrossRef]
- Nannarone, S.; Borgatti, F.; Deluisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Mahne, N.; Pasquali, L.; Pedio, M.; et al. The BEAR beamline at elettra. AIP Conf. Proc. 2004, 705, 450–453. [Google Scholar]
- BEAR beamline. 2021. Available online: www.elettra.trieste.it/elettra-beamlines/bear.html (accessed on 3 October 2021).
- Pasquali, L.; De Luisa, A.; Nannarone, S. The UHV experimental chamber for optical measurements (reflectivity and absorption) and angle resolved photoemission of the BEAR beamline at ELETTRA. AIP Conf. Proc. 2004, 705, 1142–1145. [Google Scholar]
- Haverkort, M.W.; Hollmann, N.; Krug, I.P.; Tanaka, A. Symmetry analysis of magneto-optical effects: The case of X-ray diffraction and X-ray absorption at the transition metal L2,3 edge. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 82, 094403. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.Y. Dispersion relations and sum rules for magnetoreflectivity. J. Opt. Soc. Am. 1976, 66, 547–554. [Google Scholar] [CrossRef]
- Smith, D.Y. Comments on the dispersion relations for the complex refractive index of circularly and elliptically polarized light*. J. Opt. Soc. Am. 1976, 66, 454–460. [Google Scholar] [CrossRef]
- Kao, C.; Hastings, J.B.; Johnson, E.D.; Siddons, D.P.; Smith, G.C.; Prinz, G.A. Magnetic-resonance exchange scattering at the iron LII and LIII edges. Phys. Rev. Lett. 1990, 65, 373–376. [Google Scholar] [CrossRef]
- Kao, C.C.; Chen, C.T.; Johnson, E.D.; Hastings, J.B.; Lin, H.J.; Ho, G.H.; Meigs, G.; Brot, J.M.; Hulbert, S.L.; Idzerda, Y.U.; et al. Dichroic interference effects in circularly polarized soft-X-ray resonant magnetic scattering. Phys. Rev. B 1994, 50, 9599–9602. [Google Scholar] [CrossRef]
- Kortright, J.B.; Kim, S.K. Resonant magneto-optical properties of Fe near its 2p levels: Measurement and applications. Phys. Rev. B—Condens. Matter Mater. Phys. 2000, 62, 12216–12228. [Google Scholar] [CrossRef]
- Mertins, H.C.; Abramsohn, D.; Gaupp, A.; Schäfers, F.; Gudat, W.; Zaharko, O.; Grimmer, H.; Oppeneer, P.M. Resonant magnetic reflection coefficients at the Fe (formula presented) edge obtained with linearly and circularly polarized soft x rays. Phys. Rev. B—Condens. Matter Mater. Phys. 2002, 66, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, M.; Hague, C.F.; Pasquali, L.; Mirone, A.; Mariot, J.M.; Isberg, P.; Gullikson, E.M.; Underwood, J.H. Optical constants of ferromagnetic iron via 2p resonant magnetic scattering. Phys. Rev. Lett. 1998, 81, 1521–1524. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, M.; Mirone, A. Resonant reflectivity from a Ni(110) crystal: Magnetic effects at the Ni 2p edges using linearly and circularly polarized photons. Phys. Rev. B—Condens. Matter Mater. Phys. 1998, 57, 8408–8415. [Google Scholar] [CrossRef]
- Tonnerre, J.M.; Jaouen, N.; Bontempi, E.; Carbone, D.; Babonneau, D.; De Santis, M.; Tolentino, N.; Grenier, S.; Garaudee, S.; Staub, U. Soft X-ray resonant magnetic reflectivity studies for in-and out-of-plane magnetization profile in ultra thin films. J. Phys. Conf. Ser. 2010, 211, 012015. [Google Scholar] [CrossRef] [Green Version]
- Abes, M.; Atkinson, D.; Tanner, B.K.; Charlton, T.R.; Langridge, S.; Hase, T.P.A.; Ali, M.; Marrows, C.H.; Hickey, B.J.; Neudert, A.; et al. Spin polarization and exchange coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced by a Co layer. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 82, 184412. [Google Scholar] [CrossRef] [Green Version]
- Awaji, N.; Noma, K.; Nomura, K.; Doi, S.; Hirono, T.; Kimura, H.; Nakamura, T. Soft X-ray resonant magnetic reflectivity study on induced magnetism in [Fe70Co30/Pd]nsuper-lattice films. J. Phys. Conf. Ser. 2007, 83, 012034. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S.M.; Stashkevich, A.; Nasui, M.; Gabor, M.S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.O.; et al. Thickness Dependence of the Dzyaloshinskii-Moriya Interaction in Co2FeAl Ultrathin Films: Effects of Annealing Temperature and Heavy-Metal Material. Phys. Rev. Appl. 2018, 9, 044044. [Google Scholar] [CrossRef] [Green Version]
- Geissler, J.; Goering, E.; Justen, M.; Weigand, F.; Schütz, G.; Langer, J.; Schmitz, D.; Maletta, H.; Mattheis, R. Pt magnetization profile in a Pt/Co bilayer studied by resonant magnetic X-ray reflectometry. Phys. Rev. B—Condens. Matter Mater. Phys. 2002, 65, 1–4. [Google Scholar] [CrossRef]
- Graulich, D.; Krieft, J.; Moskaltsova, A.; Demir, J.; Peters, T.; Pohlmann, T.; Bertram, F.; Wollschläger, J.; Jose, J.R.; Francoual, S.; et al. Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD. Appl. Phys. Lett. 2021, 118, 012407. [Google Scholar] [CrossRef]
- Hosoito, N.; Ohkochi, T.; Kodama, K.; Suzuki, M. Charge and induced magnetic structures of Au layers in Fe/Au bilayer and Fe/Au/Fe trilayer films by resonant X-ray magnetic reflectivity at the Au L 3 absorption edge. J. Phys. Soc. Japan 2014, 83. [Google Scholar] [CrossRef]
- Jaouen, N.; Tonnerre, J.M.; Raoux, D.; Bontempi, E.; Ortega, L.; Müenzenberg, M.; Felsch, W.; Rogalev, A.; Dürr, H.A.; Dudzik, E.; et al. Ce 5d magnetic profile in Fe/Ce multilayers for the (formula presented) and (formula presented) -like Ce phases by X-ray resonant magnetic scattering. Phys. Rev. B—Condens. Matter Mater. Phys. 2002, 66, 1–14. [Google Scholar] [CrossRef]
- Kim, D.O.; Song, K.M.; Choi, Y.; Min, B.C.; Kim, J.S.; Choi, J.W.; Lee, D.R. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Bertram, F.; Kuschel, O.; Wollschläger, J.; Strempfer, J.; Meinert, M.; Reiss, G. Static magnetic proximity effect in Pt/ Ni1-x Fex bilayers investigated by X-ray resonant magnetic reflectivity. Phys. Rev. B 2016, 93, 214440. [Google Scholar] [CrossRef] [Green Version]
- Macke, S. ReMagX. 2018. Available online: https://www.remagx.org/wiki/doku.php (accessed on 3 October 2021).
- Krieft, J.; Graulich, D.; Moskaltsova, A.; Bouchenoire, L.; Francoual, S.; Kuschel, T. Advanced data analysis procedure for hard X-ray resonant magnetic reflectivity discussed for Pt thin film samples of various complexity. J. Phys. D Appl. Phys. 2020, 53, 375004. [Google Scholar] [CrossRef]
- Kuschel, T.; Klewe, C.; Schmalhorst, J.M.; Bertram, F.; Kuschel, O.; Schemme, T.; Wollschläger, J.; Francoual, S.; Strempfer, J.; Gupta, A.; et al. Static Magnetic Proximity Effect in Pt/NiFe2O4 and Pt/Fe Bilayers Investigated by X-ray Resonant Magnetic Reflectivity. Phys. Rev. Lett. 2015, 115, 097401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskaltsova, A.; Krieft, J.; Graulich, D.; Matalla-Wagner, T.; Kuschel, T. Impact of the magnetic proximity effect in Pt on the total magnetic moment of Pt/Co/Ta trilayers studied by X-ray resonant magnetic reflectivity. AIP Adv. 2020, 10, 015154. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, A.; Koyiloth Vayalil, S.; Graulich, D.; Ahamed, I.; Francoual, S.; Kashyap, A.; Kuschel, T.; Anil Kumar, P.S. Asymmetric modification of the magnetic proximity effect in Pt/Co/Pt trilayers by the insertion of a Ta buffer layer. Phys. Rev. B 2020, 102, 144435. [Google Scholar] [CrossRef]
- Rowan-Robinson, R.M.; Stashkevich, A.A.; Roussigné, Y.; Belmeguenai, M.; Chérif, S.M.; Thiaville, A.; Hase, T.P.A.; Hindmarch, A.T.; Atkinson, D. The interfacial nature of proximity-induced magnetism and the Dzyaloshinskii-Moriya interaction at the Pt/Co interface. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rowan-Robinson, R.M.; Hindmarch, A.T.; Atkinson, D. Efficient current-induced magnetization reversal by spin-orbit torque in Pt/Co/Pt. J. Appl. Phys. 2018, 124, 183901. [Google Scholar] [CrossRef] [Green Version]
- Sève, L.; Jaouen, N.; Tonnerre, J.M.; Raoux, D.; Bartolomé, F.; Arend, M.; Felsch, W.; Rogalev, A.; Goulon, J.; Gautier, C.; et al. Profile of the induced 5d magnetic moments in Ce/Fe and La/Fe multilayers probed by X-ray magnetic-resonant scattering. Phys. Rev. B—Condens. Matter Mater. Phys. 1999, 60, 9662–9674. [Google Scholar] [CrossRef] [Green Version]
- Szuszkiewicz, W.; Ott, F.; Kisielewski, J.; Sveklo, I.; Dynowska, E.; Minikayev, R.; Kurant, Z.; Kuna, R.; Jakubowski, M.; Wawro, A.; et al. Polarized neutron reflectivity and X-ray scattering measurements as tools to study properties of Pt/Co/Pt ultrathin layers irradiated by femtosecond laser pulses. Phase Transit. 2016, 89, 328–340. [Google Scholar] [CrossRef]
- Huijben, M.; Koster, G.; Liao, Z.L.; Rijnders, G. Interface-engineered oxygen octahedral coupling in manganite heterostructures. Appl. Phys. Rev. 2017, 4, 041103. [Google Scholar] [CrossRef]
- Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 2016, 15, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Fabbris, G.; Jaouen, N.; Meyers, D.; Feng, J.; Hoffman, J.D.; Sutarto, R.; Chiuzbǎian, S.G.; Bhattacharya, A.; Dean, M.P.M. Emergent c-axis magnetic helix in manganite-nickelate superlattices. Phys. Rev. B. 2018, 98, 180401. [Google Scholar] [CrossRef] [Green Version]
- Gibert, M.; Viret, M.; Torres-Pardo, A.; Piamonteze, C.; Zubko, P.; Jaouen, N.; Tonnerre, J.M.; Mougin, A.; Fowlie, J.; Catalano, S.; et al. Interfacial Control of Magnetic Properties at LaMnO3/LaNiO3 Interfaces. Nano Lett. 2015, 15, 7355–7361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibert, M.; Viret, M.; Zubko, P.; Jaouen, N.; Tonnerre, J.M.; Torres-Pardo, A.; Catalano, S.; Gloter, A.; Stéphan, O.; Triscone, J.M. Interlayer coupling through a dimensionality-induced magnetic state. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hühn, S.; Jungbauer, M.; Michelmann, M.; Massel, F.; Koeth, F.; Ballani, C.; Moshnyaga, V. Modeling of colossal magnetoresistance in La0.67Ca0.33MnO3/Pr0.67Ca0.33MnO3 superlattices: Comparison with individual (La1−yPry)0.67Ca0.33MnO3 films. J. Appl. Phys. 2013, 113, 17–701. [Google Scholar] [CrossRef]
- Freeland, J.W.; Gray, K.E.; Ozyuzer, L.; Berghuis, P.; Badica, E.; Kavich, J.; Zheng, H.; Mitchell, J.F. Full bulk spin polarization and intrinsic tunnel barriers at the surface of layered manganites. Nat. Mater. 2005, 4, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Verna, A.; Davidson, B.A.; Szeto, Y.; Petrov, A.Y.; Mirone, A.; Giglia, A.; Mahne, N.; Nannarone, S. Measuring magnetic profiles at manganite surfaces with monolayer resolution. J. Magn. Magn. Mater. 2010, 322, 1212–1216. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Gauquelin, N.; Green, R.J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; et al. Thickness Dependent Properties in Oxide Heterostructures Driven by Structurally Induced Metal-Oxygen Hybridization Variations. Adv. Funct. Mater. 2017, 27, 1606717. [Google Scholar] [CrossRef] [Green Version]
- Bertinshaw, J.; Brück, S.; Lott, D.; Fritzsche, H.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Goering, E.; Audehm, P.; Cortie, D.L.; et al. Element-specific depth profile of magnetism and stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 interface. Phys. Rev. B—Condens. Matter Mater. Phys. 2014, 90, 041113. [Google Scholar] [CrossRef] [Green Version]
- Brück, S.; Treiber, S.; MacKe, S.; Audehm, P.; Christiani, G.; Soltan, S.; Habermeier, H.U.; Goering, E.; Albrecht, J. The temperature-dependent magnetization profile across an epitaxial bilayer of ferromagnetic La2/3Ca1/3MnO3 and superconducting YBa2Cu3O7-δ. New J. Phys. 2011, 13, 033023. [Google Scholar] [CrossRef]
- Satapathy, D.K.; Uribe-Laverde, M.A.; Marozau, I.; Malik, V.K.; Das, S.; Wagner, T.; Marcelot, C.; Stahn, J.; Brück, S.; Rühm, A.; et al. Magnetic proximity effect in YBa 2Cu3O7/La2/3Ca1/3MnO3 and YBa2Cu3O7/LaMnO3+δ superlattices. Phys. Rev. Lett. 2012, 108, 197201. [Google Scholar] [CrossRef] [Green Version]
- Freeland, J.W.; Chakhalian, J.; Boris, A.V.; Tonnerre, J.M.; Kavich, J.J.; Yordanov, P.; Grenier, S.; Zschack, P.; Karapetrova, E.; Popovich, P.; et al. Charge transport and magnetization profile at the interface between the correlated metal CaRuO3 and the antiferromagnetic insulator CaMnO3. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 094414. [Google Scholar] [CrossRef] [Green Version]
- Brück, S.; Paul, M.; Tian, H.; Müller, A.; Kufer, D.; Praetorius, C.; Fauth, K.; Audehm, P.; Goering, E.; Verbeeck, J.; et al. Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO. Appl. Phys. Lett. 2012, 100, 081603. [Google Scholar] [CrossRef]
- Zafar, K.; Audehm, P.; Schütz, G.; Goering, E.; Pathak, M.; Chetry, K.B.; Leclair, P.R.; Gupta, A. Cr magnetization reversal at the CrO2/RuO2 interface: Origin of the reduced GMR effect. Phys. Rev. B—Condens. Matter Mater. Phys. 2011, 84, 134412. [Google Scholar] [CrossRef]
- Verna, A.; Davidson, B.A.; Mirone, A.; Nannarone, S. The influence of surface roughness in X-ray resonant magnetic reflectivity experiments. Eur. Phys. J. Spec. Top. 2012, 208, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Nogués, J.; Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Roy, S.; Fitzsimmons, M.R.; Park, S.; Dorn, M.; Petracic, O.; Roshchin, I.V.; Li, Z.P.; Batlle, X.; Morales, R.; Misra, A.; et al. Depth profile of uncompensated spins in an exchange bias system. Phys. Rev. Lett. 2005, 95, 047201. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Sanchez-Hanke, C.; Park, S.; Fitzsimmons, M.R.; Tang, Y.J.; Hong, J.I.; Smith, D.J.; Taylor, B.J.; Liu, X.; Maple, M.B.; et al. Evidence of modified ferromagnetism at a buried Permalloy/CoO interface at room temperature. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 75, 014442. [Google Scholar] [CrossRef]
- Blackburn, E.; Sanchez-Hanke, C.; Roy, S.; Smith, D.J.; Hong, J.I.; Chan, K.T.; Berkowitz, A.E.; Sinha, S.K. Pinned Co moments in a polycrystalline permalloy/CoO exchange-biased bilayer. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 78, 180408. [Google Scholar] [CrossRef]
- Lee, J.S.; Kao, C.C.; Jang, H.; Ko, K.T.; Park, J.H.; Rhie, K.; Kim, J.Y. Uncompensated spins in trilayer CoFe/IrMn/NiFe exchange bias: Soft X-ray resonant magnetic scattering study. J. Phys. Condens. Matter 2011, 23, 256001. [Google Scholar] [CrossRef]
- Brück, S.; MacKe, S.; Goering, E.; Ji, X.; Zhan, Q.; Krishnan, K.M. Coupling of Fe and uncompensated Mn moments in exchange-biased Fe/MnPd. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 134414. [Google Scholar] [CrossRef] [Green Version]
- Brück, S.; Schütz, G.; Goering, E.; Ji, X.; Krishnan, K.M. Uncompensated moments in the MnPd/Fe Exchange Bias System. Phys. Rev. Lett. 2008, 101, 126402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, F.; Nefedov, A.; Grabis, J.; Nowak, G.; Bergmann, A.; Zabel, H. Soft X-ray resonant magnetic scattering studies on Fe/CoO exchange bias system. J. Magn. Magn. Mater. 2006, 300, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Gruyters, M.; Schmitz, D. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems. Phys. Rev. Lett. 2008, 100, 077205. [Google Scholar] [CrossRef]
- Mishra, S.K.; Radu, F.; Valencia, S.; Schmitz, D.; Schierle, E.; Dürr, H.A.; Eberhardt, W. Dual behavior of antiferromagnetic uncompensated spins in NiFe/IrMn exchange biased bilayers. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 212404. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Radu, F.; Dürr, H.A.; Eberhardt, W. Training-induced positive exchange bias in NiFe/IrMn bilayers. Phys. Rev. Lett. 2009, 102, 177208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaharko, O.; Oppeneer, P.M.; Grimmer, H.; Horisberger, M.; Mertins, H.C.; Abramsohn, D.; Schäfers, F.; Bill, A.; Braun, H.B. Exchange coupling in Fe/NiO/Co film studied by soft X-ray resonant magnetic reflectivity. Phys. Rev. B—Condens. Matter Mater. Phys. 2002, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jungbauer, M.; Hühn, S.; Michelmann, M.; Goering, E.; Moshnyaga, V. Exchange bias in La0.7Sr0.3MnO3/SrMnO3/La0.7Sr0.3MnO3 trilayers. J. Appl. Phys. 2013, 113, 17–709. [Google Scholar] [CrossRef]
- Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Mickey, B.J. Weak magnetic moment on IrMn exchange bias pinning layers. Appl. Phys. Lett. 2001, 79, 985–987. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, J.; Persson, A.; Arvanitis, D.; Temst, K.; Van Haesendonck, C. Direct observation of frozen moments in the NiFe/FeMn exchange bias system. New J. Phys. 2013, 15, 033016. [Google Scholar] [CrossRef] [Green Version]
- Audehm, P.; Schmidt, M.; Bruck, S.; Tietze, T.; Grafe, J.; MacKe, S.; Schutz, G.; Goering, E. Pinned orbital moments—A new contribution to magnetic anisotropy. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, S.; Nomura, K.; Awaji, N.; Hosoito, N.; Yamagishi, R.; Suzuki, M. Magnetization profile of Ir in a MnIr/CoFe exchange bias system evaluated by hard X-ray resonant magnetic reflectivity. J. Appl. Phys. 2009, 106, 123919. [Google Scholar] [CrossRef]
- Violbarbosa, C.E.; Meyerheim, H.L.; Jal, E.; Tonnerre, J.M.; Przybylski, M.; Sandratskii, L.M.; Yildiz, F.; Staub, U.; Kirschner, J. Inhomogeneous temperature dependence of the magnetization in fcc-Fe on Cu(001). Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 85, 184414. [Google Scholar] [CrossRef] [Green Version]
- Meyerheim, H.L.; Tonnerre, J.M.; Sandratskii, L.; Tolentino, H.C.N.; Przybylski, M.; Gabi, Y.; Yildiz, F.; Fu, X.L.; Bontempi, E.; Grenier, S.; et al. New model for magnetism in ultrathin fcc Fe on Cu(001). Phys. Rev. Lett. 2009, 103, 267202. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.D.; Bouchenoire, L.; Thompson, P.; Springell, R.; Mirone, A.; Stirling, W.G.; Beesley, A.; Thomas, M.F.; Ward, R.C.C.; Wells, M.R.; et al. Profile of the U 5f magnetization in U/Fe multilayers. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 77, 014427. [Google Scholar] [CrossRef] [Green Version]
- Valvidares, S.M.; Quirós, C.; Mirone, A.; Tonnerre, J.M.; Stanescu, S.; Bencok, P.; Souche, Y.; Zárate, L.; Martín, J.I.; Vélez, M.; et al. Resolving antiferromagnetic states in magnetically coupled amorphous Co-Si-Si multilayers by soft X-ray resonant magnetic scattering. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 78, 064406. [Google Scholar] [CrossRef]
- Zaharko, O.; Mertins, H.C.; Grimmer, H.; Schäfers, F. Soft X-ray resonant magnetic reflectivity from Fe/C multilayers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 467–468, 1419–1422. [Google Scholar] [CrossRef]
- Meltchakov, E.; Mertins, H.C.; Scheer, M.; Di Fonzo, S.; Jark, W.; Schäfers, F. Soft X-ray resonant magnetic reflectivity of Gd/Fe multilayers. J. Magn. Magn. Mater. 2002, 240, 550–552. [Google Scholar] [CrossRef]
- Choi, Y.; Haskel, D.; Camley, R.E.; Lee, D.R.; Lang, J.C.; Srajer, G.; Jiang, J.S.; Bader, S.D. Temperature evolution of the Gd magnetization profile in strongly coupled Gd/Fe multilayers. Phys. Rev. B—Condens. Matter Mater. Phys. 2004, 70, 134420. [Google Scholar] [CrossRef]
- Haskel, D.; Srajer, G.; Lang, J.C.; Pollmann, J.; Nelson, C.S.; Jiang, J.S.; Bader, S.D. Enhanced interfacial magnetic coupling of Gd /Fe multilayers. Phys. Rev. Lett. 2001, 87, 207201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonnard, P.; Le Guen, K.; André, J.M.; Delaunay, R.; Mahne, N.; Giglia, A.; Nannarone, S.; Verna, A.; Wang, Z.S.; Zhu, J.T.; et al. Determination of the magnetization profile of Co/Mg periodic multilayers by magneto-optic Kerr effect and X-ray magnetic resonant reflectivity. J. Phys. Conf. Ser. 2013, 417, 12025. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, M.; Mirone, A.; Hague, C.F.; Hague, C.F.; Castrucci, P.; Gunnella, R.; De Crescenzi, M. Resonant magnetic scattering from fcc Cu/Fe/Cu/Si(111) heterostructures. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 64, 124031–124034. [Google Scholar] [CrossRef]
- Carlomagno, I.; Verna, A.; Forrest, T.; Meneghini, C. Structural Profile of a MgO/Co/MgO Trilayer Using Soft X-ray Resonant Magnetic Reflectivity. Springer Proc. Phys. 2021, 220, 155–167. [Google Scholar] [CrossRef]
- Lee, J.S.; Vescovo, E.; Arena, D.A.; Kao, C.C.; Beaujour, J.M.; Kent, A.D.; Jang, H.; Park, J.H.; Kim, J.Y. Longitudinal and transverse magnetization components in thin films: A resonant magnetic reflectivity investigation using circularly polarized soft X-rays. Appl. Phys. Lett. 2010, 96, 42507. [Google Scholar] [CrossRef] [Green Version]
- Tonnerre, J.M.; Przybylski, M.; Ragheb, M.; Yildiz, F.; Tolentino, H.C.N.; Ortega, L.; Kirschner, J. Direct in-depth determination of a complex magnetic configuration in an exchange-coupled bilayer with perpendicular and in-plane anisotropy. Phys. Rev. B—Condens. Matter Mater. Phys. 2011, 84, 100407. [Google Scholar] [CrossRef]
- Przybylski, M.; Tonnerre, J.M.; Yildiz, F.; Tolentino, H.C.N.; Kirschner, J. Non-collinear magnetic profile in (Rh/Fe1−xCox)2/Rh(001) bilayer probed by polarized soft X-ray resonant magnetic reflectivity. J. Appl. Phys. 2012, 111, 07C103. [Google Scholar] [CrossRef]
- Tonnerre, J.M.; De Santis, M.; Grenier, S.; Tolentino, H.C.N.; Langlais, V.; Bontempi, E.; García-Fernández, M.; Staub, U. Depth magnetization profile of a perpendicular exchange coupled system by soft-X-ray resonant magnetic reflectivity. Phys. Rev. Lett. 2008, 100, 157202. [Google Scholar] [CrossRef] [Green Version]
- Kortright, J.B.; Kim, S.K.; Denbeaux, G.P.; Zeltzer, G.; Takano, K.; Fullerton, E.E. Soft-X-ray small-angle scattering as a sensitive probe of magnetic and charge heterogeneity. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 64, 092401. [Google Scholar] [CrossRef]
- Jal, E.; Dąbrowski, M.; Tonnerre, J.M.; Przybylski, M.; Grenier, S.; Jaouen, N.; Kirschner, J. Magnetization profile across Au-covered bcc Fe films grown on a vicinal surface of Ag(001) as seen by X-ray resonant magnetic reflectivity. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 224418. [Google Scholar] [CrossRef]
- Verna, A.; Bergenti, I.; Pasquali, L.; Giglia, A.; Albonetti, C.; Dediu, V.; Borgatti, F. Magnetic Depth Profiling of the Co/C60 Interface through Soft X-ray Resonant Magnetic Reflectivity. IEEE Trans. Magn. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Sperl, M.; MacCherozzi, F.; Borgatti, F.; Verna, A.; Rossi, G.; Soda, M.; Schuh, D.; Bayreuther, G.; Wegscheider, W.; Cezar, J.C.; et al. Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga,Mn)As heterostructures. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 035211. [Google Scholar] [CrossRef] [Green Version]
- Golias, E.; Kumberg, I.; Gelen, I.; Thakur, S.; Gördes, J.; Hosseinifar, R.; Guillet, Q.; Dewhurst, J.K.; Sharma, S.; Schuler-Langeheine, C.; et al. Ultrafast Optically Induced Ferromagnetic State in an Elemental Antiferromagnet. Phys. Rev. Lett. 2021, 126, 107202. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; El Moussaoui, S.; Hirata, Y.; Yamamoto, S.; Kubota, Y.; Owada, S.; Yabashi, M.; Seki, T.; Takanashi, K.; Matsuda, I.; et al. Element-selectively tracking ultrafast demagnetization process in Co/Pt multilayer thin films by the resonant magneto-optical Kerr effect. Appl. Phys. Lett. 2020, 116, 172406. [Google Scholar] [CrossRef]
- Gutt, C.; Sant, T.; Ksenzov, D.; Capotondi, F.; Pedersoli, E.; Raimondi, L.; Nikolov, I.P.; Kiskinova, M.; Jaiswal, S.; Jakob, G.; et al. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI. Struct. Dyn. 2017, 4, 55101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuyama, T.; Chakraverty, S.; Macke, S.; Pontius, N.; Schüßler-Langeheine, C.; Hwang, H.Y.; Tokura, Y.; Wadati, H. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films. Phys. Rev. Lett. 2016, 116, 256402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verna, A.; Capelli, R.; Pasquali, L. Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems. Magnetochemistry 2021, 7, 136. https://doi.org/10.3390/magnetochemistry7100136
Verna A, Capelli R, Pasquali L. Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems. Magnetochemistry. 2021; 7(10):136. https://doi.org/10.3390/magnetochemistry7100136
Chicago/Turabian StyleVerna, Adriano, Raffaella Capelli, and Luca Pasquali. 2021. "Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems" Magnetochemistry 7, no. 10: 136. https://doi.org/10.3390/magnetochemistry7100136
APA StyleVerna, A., Capelli, R., & Pasquali, L. (2021). Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems. Magnetochemistry, 7(10), 136. https://doi.org/10.3390/magnetochemistry7100136