Structural and Magnetic Properties of Ni/C Composites Synthesized from Beet Pulp and Corn Stems
Abstract
1. Introduction
2. Experiments and Methods
2.1. Sample Preparation
2.2. Methods of Investigation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jin, Y.; Berhrens, P.; Tukker, A.; Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 2019, 115, 109391. [Google Scholar] [CrossRef]
- Gupta, A.D.; Pandey, P.; Feijoo, A.; Yaseen, Z.M.; Bokde, N.D. Smart Water Technology for Efficient Water Resource Management: A Review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Nriagu, J.O. Global Metal Pollution: Poisoning the Biosphere? Environ. Sci. Policy Sustain. Dev. 1990, 32, 7–33. [Google Scholar] [CrossRef]
- Chen, L.; Sheng, H.L. Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication. Chem. Eng. J. 2003, 95, 205–211. [Google Scholar] [CrossRef]
- Ding, Z.H.; Hu, X.; Wan, Y.S.; Wang, S.S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Huang, C.J.; Yang, B.M.; Chen, K.S.; Chang, C.C.; Kao, C.M. Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desalination 2011, 278, 203–210. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; Ellis, N.; Gyenge, E. Electrosorption on activated biochar: Effect of thermo-chemical activation treatment on the electric double layer capacitance. J. Appl. Electrochem. 2014, 44, 141–157. [Google Scholar] [CrossRef]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef]
- Safarik, I.; Horska, K.; Pospiskova, K.; Safarikova, M. Magnetically Responsive Activated Carbons for Bio- and Environmental Applications. Int. Rev. Chem. Eng. 2012, 4, 346–352. [Google Scholar]
- Ni, Y.; Jin, L.; Zhang, L.; Hong, J. Honeycomb-like Ni@C composite nanostructures: Synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. J. Mater. Chem. 2010, 20, 6430–6436. [Google Scholar] [CrossRef]
- Gymes-Pastora, J.; Brindas, E.; Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204. [Google Scholar] [CrossRef]
- Speltini, A.; Sturini, M.; Maraschi, F.; Profumo, A. Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ. Anal. Chem. 2016, 10, 11–23. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Sellmyer, D.J. Nanostructure and magnetic properties of composite Co Pt: C films for extremely high-density recording. J. Appl. Phys. 2000, 87, 6959–6961. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Fan, G.; Li, F. Synthesis of novel Ni/C catalyst derived from a composite precursor for hydrodechlorination. Catal. Commun. 2012, 19, 56–60. [Google Scholar] [CrossRef]
- Lyu, S.; Liu, C.; Wang, G.; Zhang, Y.; Li, J.; Wang, L. Structural evolution of carbon in an Fe@C catalyst during the Fischer-Tropsch synthesis reaction. Catal. Sci. Technol. 2019, 9, 1013–1020. [Google Scholar] [CrossRef]
- Aluha, J.; Abatzoglou, N. Gold-promoted plasma-synthesized Ni-Co-Fe/C catalyst for Fischer-Tropsch synthesis. Gold Bull. 2017, 50, 147–162. [Google Scholar] [CrossRef]
- Podsiadły, M.; Narkiewicz, U.; Arabczyk, W. Preparation of carbon-encapsulated cobalt nanoparticles by catalytic ethane decomposition. Mater. Sci. Poland. 2008, 26, 357–364. [Google Scholar]
- Yao, T.; Cui, T.; Wu, J. Preparation of acid-resistant core/shell Fe3O4/C materials and their use as catalyst supports. Carbon 2012, 50, 2287–2295. [Google Scholar] [CrossRef]
- Xia, W.; Zou, R.Q.; An, L.; Xia, D.G.; Guo, S.J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576. [Google Scholar] [CrossRef]
- Yan, P.; Guo, W.; Liang, Z.; Meng, W.; Yin, Z.; Li, S.; Li, M.; Zhang, M.; Yan, J.; Xiao, D.; et al. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Res. 2019, 12, 2341–2347. [Google Scholar] [CrossRef]
- Ziogas, P.; Bourlinos, A.B.; Tucek, J.; Malina, O.; Douvalis, A.P. Novel Magnetic Nanohybrids: From Iron Oxide to Iron Carbide Nanoparticles Grown on Nanodiamonds. Magnetochemistry 2020, 6, 73. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/254292/global-corn-production-by-country (accessed on 20 February 2021).
- Martínez-Casillas, D.C.; Mascorro-Gutiérrez, I.; Betancourt-Mendiola, M.L.; Palestino, G.; Quiroga-González, E.; Pascoe-Sussoni, J.E.; Guillén-López, A.; Muñiz, J.; Cuentas-Gallegos, A.K. Residue of Corncob Gasification as Electrode of Supercapacitors: An Experimental and Theoretical Study. Waste Biomass Valor 2020. [Google Scholar] [CrossRef]
- Cao, Q.; Xie, K.; Lv, Y.; Bao, W. Process effects on activated carbon with large specific surface area from corn cob. Bioresour. Technol. 2006, 97, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Yadav, S.S.; Rawat, S.; Singh, J.; Koduru, J.R. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J. Environ. Manag. 2019, 246, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Bordun, I.; Ptashnyk, V.; Sadova, M.; Chapovska, R. Utilization of sugar beet pulp by getting activated carbon. Environ. Probl. 2017, 2, 29–32. Available online: http://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6412/fulltext.pdf (accessed on 20 February 2021).
- Soloviy, C.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials. J. Water Land Dev. 2020, 47, 160–168. [Google Scholar] [CrossRef]
- Bordun, I.; Sadova, M.; Gorodnia, T. Determination of the specific surface area of activated carbon materials on the basis of methylene blue adsorbtion. Slovak Int. Sci. J. 2017, 11, 17–21. (In Ukrainian) [Google Scholar]
- Duriagina, Z.A.; Goliaka, R.L.; Borysiuk, A.K. The Automated Wide-Range Magnetometer for the Magnetic Phase Analysis of Alloys: Development and Application. Uspekhi Fiziki Metallov. 2013, 14, 33–66. (In Ukrainian) [Google Scholar] [CrossRef]
- Galaburda, M.V.; Bogatyrov, V.M.; Tomaszewski, W.; Oranska, O.I.; Borysenko, M.V.; Skubiszewska-Zięba, J.; Gun’ko, V.M. Adsorption/desorption of explosives on Ni-, Co-, and NiCo-carbon composites: Application in solid phase extraction. Colloids Surf. A 2017, 529, 950–958. [Google Scholar] [CrossRef]
- Marinoni, N.; Broekmans, M.A.T.M. Microstructure of selected aggregate quartz by XRD, and a critical review of the crystallinity index. Cem. Concr. Res. 2013, 54, 215–225. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, J.; Wei, M.; Li, F.; Ban, B.; Li, J. Effect of impurity content difference between quartz particles on flotation behavior and its mechanism. Powder Technol. 2020, 375, 504–512. [Google Scholar] [CrossRef]
- Bocullo, V.; Vitola, L.; Vaiciukyniene, D.; Kantautas, A.; Bajare, D. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 2021, 258, 123846. [Google Scholar] [CrossRef]
- Adewunmi, A.A.; Amao, A.O.; Kamal, M.S.; Solling, T.I. Demulsification and breaking mechanism of variable quartz concentrates obtained from sand. J. Pet. Sci. Eng. 2020, 192, 107263. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Yang, Q.; Wang, J.; Yan, S.; Chen, C.; Chen, J. Urchin-like Ni@N-doped carbon composites with Ni nanoparticles encapsulated in N-doped carbon nantubes as high-efficient electrocatalyst for oxygen evolution reaction. J. Solid State Chem. 2019, 278, 120843. [Google Scholar] [CrossRef]
- Raimundo, R.A.; Silva, V.D.; Simões, T.A.; Medeiros, E.S.; Macedo, D.A.; Morales, M.A. Ni/NiO-carbon composite fibers prepared by solution blow spinning: Structure and magnetic properties. Ceram. Int. 2020, 46, 18933–18939. [Google Scholar] [CrossRef]
- Ying, T.; Zhang, J.; Liu, X.; Yu, J.; Yu, J.; Zhang, X. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application. J. Alloys Compd. 2020, 849, 156662. [Google Scholar] [CrossRef]
- Ren, H.; Shu, X.; Liu, Z.; Zhou, J.; Ma, J.; Liu, Y.; Kong, L.B.; Min, F.; Shi, X.; Han, J.; et al. In-situ synthesis of layered porous coal-derived carbon/Ni magnetic composites with promising microwave absorption performance. J. Magn. Magn. Mater. 2020, 513, 167231. [Google Scholar] [CrossRef]
- Xiao, N.; Zhang, X.; Liu, C.; Wang, Y.; Li, H.; Qiu, J. Coal-based carbon anodes for highperformance potassium-ion batteries. Carbon 2019, 147, 574–581. [Google Scholar] [CrossRef]
- Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon 2016, 99, 338–347. [Google Scholar] [CrossRef]
- He, X.; Zhong, W.; Au, C.-T.; Du, Y. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res. Lett. 2013, 8, 446. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.M.; Pakhomov, A.B.; Bao, Y.; Blomqvist, P.; Chun, Y.; Gonzales, M.; Roberts, B.K. Nanomagnetism and spin electronics: Materials, microstructure and novel properties. J. Mater. Sci. 2006, 41, 793–815. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; p. 625. [Google Scholar] [CrossRef]
- Du, Y.; Xu, M.; Wu, J.; Shi, Y.; Lu, H.; Xue, R. Magnetic properties of ultrafine nickel particles. J. Appl. Phys. 1991, 70, 5903–5905. [Google Scholar] [CrossRef]
- Yao, Y.D.; Chen, Y.Y.; Hsu, C.M.; Lin, H.M.; Tung, C.Y.; Tai, M.F.; Suo, C.T. Thermal and magnetic studies of nanocrystalline Ni. Nanostruct. Mat. 1995, 6, 933–936. [Google Scholar] [CrossRef]
Sample | σs, A·m2/kg | Hc, kA/m | Ni, wt.% |
---|---|---|---|
ACB-Ni | 7.1 | 5 | 13 |
ACC-Ni | 3.9 | 4 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordun, I.; Pidluzhna, A.; Ivashchyshyn, F.; Borysiuk, A.; Całus, D.; Chwastek, K. Structural and Magnetic Properties of Ni/C Composites Synthesized from Beet Pulp and Corn Stems. Magnetochemistry 2021, 7, 31. https://doi.org/10.3390/magnetochemistry7030031
Bordun I, Pidluzhna A, Ivashchyshyn F, Borysiuk A, Całus D, Chwastek K. Structural and Magnetic Properties of Ni/C Composites Synthesized from Beet Pulp and Corn Stems. Magnetochemistry. 2021; 7(3):31. https://doi.org/10.3390/magnetochemistry7030031
Chicago/Turabian StyleBordun, Ihor, Anna Pidluzhna, Fedir Ivashchyshyn, Anatoliy Borysiuk, Dariusz Całus, and Krzysztof Chwastek. 2021. "Structural and Magnetic Properties of Ni/C Composites Synthesized from Beet Pulp and Corn Stems" Magnetochemistry 7, no. 3: 31. https://doi.org/10.3390/magnetochemistry7030031
APA StyleBordun, I., Pidluzhna, A., Ivashchyshyn, F., Borysiuk, A., Całus, D., & Chwastek, K. (2021). Structural and Magnetic Properties of Ni/C Composites Synthesized from Beet Pulp and Corn Stems. Magnetochemistry, 7(3), 31. https://doi.org/10.3390/magnetochemistry7030031