Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study
Abstract
:1. Introduction
2. Materials and Methods
Computation Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graf, T.; Felser, C.; Stuart, S.P. Parkin Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1. [Google Scholar] [CrossRef]
- Weht, R.; Pickett, W.E. Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B 1999, 60, 13006. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.D.; Dai, X.F.; Liu, H.Y.; Chen, J.L.; Li, Y.X.; Xiao, G.; Wu, G.H. Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: Structural, electronic, and magnetic properties. Phys. Rev. B 2008, 77, 014424. [Google Scholar] [CrossRef] [Green Version]
- Ouardi, S.; Fecher, G.H.; Felser, C. Realization of Spin Gapless Semiconductors: The Heusler Compound Mn2CoAl. Phys. Rev. Lett. 2013, 110, 100401. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.R.; Zhong, M.M.; Feng, Y.; Zhou, Y.; Yuan, H.K.; Chen, H. Structural, electronic, elastic, and thermodynamic properties of the spin-gapless semiconducting Mn2CoAl inverse Heusler alloy under pressure. Phys. Status Solidi B 2015, 252, 2830. [Google Scholar] [CrossRef]
- Luo, H.Z.; Liu, G.D.; Meng, F.B.; Wang, L.L.; Liu, E.K.; Wu, G.H.; Zhu, X.X.; Jiang, C.B. Slater–Pauling behavior and half-metallicity in Heusler alloys Mn2CuZ (Z = Ge and Sb). Comput. Mater. Sci. 2011, 50, 3119. [Google Scholar] [CrossRef]
- Abada, A.; Amara, K.; Hiadsi, S.; Amrani, B. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 2015, 388, 59. [Google Scholar] [CrossRef]
- Palmstrom, C.J. Heusler compounds and spintronics. Prog. Cryst. Growth Charact. Mater. 2016, 62, 371. [Google Scholar] [CrossRef] [Green Version]
- Marti, X.; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, Q.; Paull, R.J.; Clarkson, J.D.; Kudrnovsky, J.; Tirek, I.; et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014, 13, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamer, M.E.; Assaf, B.A.; Devakul, T.; Heiman, D. Magnetic and transport properties of Mn2CoAl oriented films. Appl. Phys. Lett. 2013, 103, 142403. [Google Scholar] [CrossRef] [Green Version]
- Seredina, M.; Gavrikov, I.; Gorshenkov, M.; Taskaev, S.; Dyakonov, A.; Komissarov, A.; Chatterjee, R.; Novosad, V.; Khovaylo, V. Magnetic and transport properties of Mn2CoGa. J. Magn. Magn. Mater. 2019, 470, 55. [Google Scholar] [CrossRef]
- Galanakis, I.; Özdoğan, K.; Şaşioğlu, E.; Blügel, S. Conditions for spin-gapless semiconducting behavior in Mn2CoAl inverse Heusler compound. J. Appl. Phys. 2014, 115, 093908. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, R.; Nepal, S.; Ray, R.B.; Paudel, R.; Kaphle, G.C. Effect of doping on SGS and weak half-metallic properties of inverse Heusler Alloys. J. Magn. Magn. Mater. 2020, 503, 166588. [Google Scholar] [CrossRef]
- Galanakis, I.; Ozdogan, K.; Sasioglu, E.; Aktas, B. Doping of Mn2VAl and Mn2VSi Heusler alloys as a route to half-metallic antiferromagnetism. Phys. Rev. B 2007, 75, 092407. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.F.; Zhao, H.F.; Zhong, X.; Su, J.L. Co doping effects on structural, electronic and magnetic properties in Mn2VGa. J. Magn. Magn. Mater. 2012, 324, 1463. [Google Scholar] [CrossRef]
- Meinert, M.; Schmalhorst, J.-M.; Reiss, G.; Arenholz, E. Ferrimagnetism and disorder epitaxial Mn2-xCoxVAl Heusler compound thin films. J. Phys. D Appl. Phys. 2011, 44, 215003. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Venkatesan, M.; Coey, J.M.D. Transport and magnetic properties of Mn2VAl: Search for half-metallicity. Solid State Commun. 2001, 118, 513. [Google Scholar] [CrossRef]
- Deka, B.; Srinivasan, A.; Singh, R.K.; Varaprasad, B.S.D.C.S.; Takahashi, Y.K.; Hono, K. Effect of Co substitution for Mn on spin polarization and magnetic properties of ferrimagnetic Mn2VAl. J. Alloys Compd. 2016, 662, 510–515. [Google Scholar] [CrossRef]
- Stinshoff, R.; Nayak, A.K.; Fecher, G.H.; Balke, B.; Ouardi, S.; Skourski, Y.; Nakamura, T.; Felser, C. Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al. Phys. Rev. B 2017, 95, 060410. [Google Scholar] [CrossRef] [Green Version]
- Midhunlal, P.V.; Arout Chelvane, J.; Arjun Krishnan, U.M.; Prabhu, D.; Gopalan, R.; Harish Kumar, N. Near total magnetic moment compensation with high Curie temperature in Mn2V0.5Co0.5Z (Z = Ga, Al) Heusler alloys. J. Phys. D Appl. Phys. 2018, 51, 075002. [Google Scholar] [CrossRef]
- Ramesh Kumar, K.; Arout Chelvane, J.; Markandeyulu, G.; Malik, S.K.; Harish Kumar, N. Effect of Co substitution on the magnetic and transport properties of the half-metalc ferrimagnet Mn2VGa. Solid State Commun. 2010, 150, 70. [Google Scholar] [CrossRef]
- Midhunlal, P.V.; Venkatesh, C.; Chelvane, J.A.; Babu, P.D.; Kumar, N.H. Neutron diffraction and ab initio studies on the fully compensated ferrimagnetic characteristics of Mn2V1-xCoxGa Heusler alloys. arXiv 2001, arXiv:2001.00707v1. [Google Scholar]
- Midhunlal, P.V.; Venkatesh, C.; Arout Chelvane, J.; Babu, P.D.; Harish Kumar, N. Mn2V0.5Co0.5Z (Z= Ga, Al) Heusler alloys: High TC compensated P-type ferrimagnetism in arc melted bulk and N-type ferrimagnetism in melt-spun ribbons. J. Magn. Magn. Mater. 2019, 489, 165298. [Google Scholar] [CrossRef]
- Umetsu, R.Y.; Tsujikawa, M.; Saito, K.; Ono, K.; Ishigaki, T.; Kainuma, R.; Shirai, M. Atomic ordering, magnetic properties, and electronic structure of Mn2CoGa Heusler alloy. J. Phys. Condens. Matter 2019, 31, 065801. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented−wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalize gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Manz, T.A.; Limas, N.G. Introducing DDEC6 atomic population analysis: Part 1. Charge partitioning theory and methodology. RSC Adv. 2016, 53, 47771. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.; Davidson, E.R. Population Analyses That Utilize Projection Operators. Int. J. Quantum Chem. 2003, 93, 384. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. 1997, 36, 1808. [Google Scholar] [CrossRef]
- Liu, E.K.; Wang, W.H.; Feng, L.; Zhu, W.; Li, G.J.; Chen, J.L.; Zhang, H.W.; Wu, G.H.; Jiang, C.B.; Xu, H.B.; et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat. Commun. 2012, 3, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offernes, L.; Ravindran, P.; Kjekshus, A. Electronic structure and chemical bonding in half-Heusler phases. J. Alloys Compd. 2007, 439, 37. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 2002, 66, 174429. [Google Scholar] [CrossRef] [Green Version]
- Sasioglu, E.; Sandratskii, L.M.; Bruno, P. Stability of ferromagnetism in the half-metallic pnictides and similar compounds: A first-principles study. J. Phys. Condens. Matter 2005, 17, 995. [Google Scholar] [CrossRef] [Green Version]
- Ramesh Kumar, K.; Harish Kumar, N.; Babu, P.D.; Venkatesh, S.; Ramakrishnan, S. Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2VGa. J. Phys. Condens. Matter 2012, 24, 336007. [Google Scholar] [CrossRef]
- Xin, Y.; Hao, H.; Ma, Y.; Luo, H.; Meng, F.; Liu, H.; Liu, E.; Wu, G. Competition of XA and L21B ordering in Heusler alloys Mn2CoZ (Z = Al, Ga, Si, Ge and Sb) and its influence on electronic structure. Intermetallics 2017, 80, 10. [Google Scholar] [CrossRef]
- Galanakis, I.; Özdoğan, K.; Aktaş, B.; Şaşıoğlu, E. Effect of doping and disorder on the half metallicity of full Heusler alloys. Appl. Phys. Lett. 2006, 89, 042502. [Google Scholar] [CrossRef] [Green Version]
Compound | Eform, eV/atom | Reference | |
---|---|---|---|
XA | L21 | ||
Mn2CoGa | −0.211 −0.192 | −0.127 | Present work [11] |
Mn2CoAl | −0.319 −0.286 | −0.190 | Present work [11] |
Mn2VGa | −0.080 | −0.267 | Present work |
Mn2VAl | −0.117 | −0.358 | Present work |
Z | x | Total Magnetic Moment Per Formula Unit, μB/f.u. | |
---|---|---|---|
XA Structure | L21 Structure | ||
Ga | 0 | 2.00 (a), 2.05 (b), 2 (c), 1.99 (d) | 7.71 (a), 7.68 (d) |
0.25 | 1.00 (a), 1.11 (b), 1 (c) | 6.43 (a) | |
0.5 | 0.06 (a), 0.1 (b), 0 (c) | 4.73 (a) | |
0.75 | 1.05 (a), 0.97 (b), 1 (c) | 3.36 (a) | |
1 | 2.01 (a), 1.8 (b), 2 (c) | 1.98 (a) | |
Al | 0 | 2.00 (a), 2.06 (b), 2 (c) | 7.44 (a) |
0.25 | 1.00 (a), 1.09 (b), 1 (c) | 5.99 (a) | |
0.5 | 0.06 (a), 0.06 (b), 0 (c) | 4.56 (a) | |
0.75 | 0.93 (a), 0.99 (b), 1 (c) | 3.11 (a) | |
1 | 1.94 (a), 1.863 (b), 2 (c) | 2.00 (a) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuova, F.; Inerbaev, T.; Abuova, A.; Merali, N.; Soltanbek, N.; Kaptagay, G.; Seredina, M.; Khovaylo, V. Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study. Magnetochemistry 2021, 7, 159. https://doi.org/10.3390/magnetochemistry7120159
Abuova F, Inerbaev T, Abuova A, Merali N, Soltanbek N, Kaptagay G, Seredina M, Khovaylo V. Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study. Magnetochemistry. 2021; 7(12):159. https://doi.org/10.3390/magnetochemistry7120159
Chicago/Turabian StyleAbuova, Fatima, Talgat Inerbaev, Aisulu Abuova, Nurpeis Merali, Nurgul Soltanbek, Gulbanu Kaptagay, Marina Seredina, and Vladimir Khovaylo. 2021. "Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study" Magnetochemistry 7, no. 12: 159. https://doi.org/10.3390/magnetochemistry7120159
APA StyleAbuova, F., Inerbaev, T., Abuova, A., Merali, N., Soltanbek, N., Kaptagay, G., Seredina, M., & Khovaylo, V. (2021). Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study. Magnetochemistry, 7(12), 159. https://doi.org/10.3390/magnetochemistry7120159