Current Status of Magnetic Resonance on Saliva for Oral and Dental Health Early Diagnosis
Abstract
:1. Introduction—Saliva Testing
2. The Role of Nuclear Magnetic Resonance in Saliva Testing and Analysis
3. NMR Saliva Analysis in Dental Health—Application and Methodology
3.1. Dental Caries
3.2. Periodontal Disease
4. NMR Saliva Analysis in Oral Oncology
5. Proposed Saliva Collection Timing Protocol in the Dental Clinical Setting
6. Future Application on Sjögren’s Syndrome
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Mikkonen, J.J.W.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodontal Res. 2016, 51, 431–437. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva diagnostics—Current views and directions. Exp. Biol. Med. (Maywood) 2016, 242, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Silwood, C.J.L.; Lynch, E.J.; Seddon, S.; Sheerin, A.; Claxson, A.W.D.; Grootveld, M.C. 1H-NMR analysis of microbial-derived organic acids in primary root carious lesions and saliva. NMR Biomed. 1999, 12, 345–356. [Google Scholar] [CrossRef]
- Da Silva, L.P.; da Silva Bastos, V.D.A.; da Silva Fidalgo, T.K.; de Oliveira, C.M.; Pomarico, L.; Valente, A.P.; Freitas-Fernandes, L.B.; Pomari, I. Oral Health of Babies and Mothers during the Breastfeeding Period. J. Clin. Diagn. Res. 2019, 13, 1–5. [Google Scholar] [CrossRef]
- Fidalgo, T.K.S.; Freitas-Fernandes, L.B.; Almeida, F.C.L.; Valente, A.P.; Souza, I.P.R. Longitudinal evaluation of salivary profile from children with dental caries before and after treatment. Metabolomics 2014, 11, 583–593. [Google Scholar] [CrossRef]
- Fidalgo, T.K.S.; Freitas-Fernandes, L.B.; Angeli, R.; Muniz, A.M.S.; Gonsalves, E.; Santos, R.; Nadal, J.; Almeida, F.C.L.; Valente, A.P.; Souza, I.P.R. Salivary metabolite signatures of children with and without dental caries lesions. Metabolomics 2012, 9, 657–666. [Google Scholar] [CrossRef]
- Singh, M.P.; Saxena, M.; Saimbi, C.S.; Siddiqui, M.H.; Roy, R. Post-periodontal surgery propounds early repair salivary biomarkers by 1H NMR based metabolomics. Metabolomics 2019, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Meoni, G.; Manavella, V.; Baima, G.; Mariani, G.M.; Cacciatore, S.; Tenori, L.; Aimetti, M. Effect of non-surgical periodontal therapy on salivary metabolic fingerprint of generalized chronic periodontitis using nuclear magnetic resonance spectroscopy. Arch. Oral Biol. 2019, 97, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Meoni, G.; Manavella, V.; Baima, G.; Tenori, L.; Cacciatore, S.; Aimetti, M. Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. J. Periodontol. 2018, 89, 1452–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzeznik, M.; Triba, M.N.; Levy, P.; Jungo, S.; Botosoa, E.; Duchemann, B.; Le Moyec, L.; Bernaudin, J.-F.; Savarin, P.; Guez, D. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS ONE 2017, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.P.; Saxena, M.; Saimbi, C.S.; Arif, J.M.; Roy, R. Metabolic profiling by 1H NMR spectroscopy of saliva shows clear distinction between control and diseased case of periodontitis. Metabolomics 2017, 13, 1–11. [Google Scholar] [CrossRef]
- Aimetti, M.; Cacciatore, S.; Graziano, A.; Tenori, L. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics 2011, 8, 465–474. [Google Scholar] [CrossRef]
- Mikkonen, J.; Singh, S.; Akhi, R.; Salo, T.; Lappalainen, R.; Gonzalez-Arriagada, W.; Ajudarte Lopes, M.R.; Kullaa, A.; Myllymaa, S. Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer. Oncol. Lett. 2018, 16, 6795–6800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchemann, B.; Triba, M.N.; Guez, D.; Rzeznik, M.; Savarin, P.; Nunes, H.; Valeyre, D.; Bernaudin, J.-F.; Le Moyec, L. Nuclear magnetic resonance spectroscopic analysis of salivary metabolome in sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2016, 33, 10–16. [Google Scholar]
- García-Villaescusa, A.; Morales-Tatay, J.M.; Monleón-Salvadó, D.; González-Darder, J.M.; Bellot-Arcis, C.; Montiel-Company, J.M.; Almerich-Silla, J.M. Using NMR in saliva to identify possible biomarkers of glioblastoma and chronic periodontitis. PLoS ONE 2018, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Human Salivary Proteome Wiki. Available online: https://salivaryproteome.nidcr.nih.gov/public/index.php/Main_Page (accessed on 30 March 2020).
- Beale, D.; Jones, O.; Karpe, A.; Dayalan, S.; Oh, D.; Kouremenos, K.; Ahmed, W.; Palombo, E. A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research. Int. J. Mol. Sci. 2017, 18, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonaka, T.; Wong, D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. Enzymes 2017, 42, 125–151. [Google Scholar]
- Gardner, A.; Parkes, H.G.; Carpenter, G.H.; So, P.-W. Developing and Standardizing a Protocol for Quantitative Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy of Saliva. J. Proteome Res. 2018, 17, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Novoa-Carballal, R.; Fernandez-Megia, E.; Jimenez, C.; Riguera, R. NMR methods for unravelling the spectra of complex mixtures. Nat. Prod. Rep. 2011, 28, 78–98. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Lynch, E.; Claxson, A.W.D.; Grootveld, M.C. 1H and (13)C NMR spectroscopic analysis of human saliva. J. Dent. Res. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef] [PubMed]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.L.; Duarte, D.; Carneiro, T.J.; Ferreira, S.; Cunha, B.; Soares, D.; Costa, A.L.; Gil, A.M. Saliva NMR metabolomics: Analytical issues in pediatric oral health research. Oral Dis. 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.A.; Kivlighan, K.T.; Fortunato, C.; Harmon, A.G.; Hibel, L.C.; Schwartz, E.B.; Whembolua, G.-L. Integration of salivary biomarkers into developmental and behaviorally-oriented research: Problems and solutions for collecting specimens. Physiol. Behav. 2007, 92, 583–590. [Google Scholar] [CrossRef]
- Unger-Saldaña, K.; Miranda, A.; Zarco-Espinosa, G.; Mainero-Ratchelous, F.; Bargalló-Rocha, E.; Lázaro-León, J.M. Health system delay and its effect on clinical stage of breast cancer: Multicenter study. Cancer 2015, 121, 2198–2206. [Google Scholar] [CrossRef]
- Chaukar, D.A.; Walvekar, R.R.; Das, A.K.; Deshpande, M.S.; Pai, P.S.; Chaturvedi, P.; Kakade, A.; D’Cruz, A.K. Quality of life in head and neck cancer survivors: A cross-sectional survey. Am. J. Otolaryngol. 2009, 30, 176–180. [Google Scholar] [CrossRef]
- Kraaijenga, S.A.C.; Oskam, I.M.; van der Molen, L.; Hamming-Vrieze, O.; Hilgers, F.J.M.; van den Brekel, M.W.M. Evaluation of long term (10-years+) dysphagia and trismus in patients treated with concurrent chemo-radiotherapy for advanced head and neck cancer. Oral Oncol. 2015, 51, 787–794. [Google Scholar] [CrossRef]
- Jou, Y.J.; Hua, C.H.; Lin, C.D.; Lai, C.H.; Huang, S.H.; Tsai, M.H.; Kao, J.Y.; Lin, C.W. S100A8 as potential salivary biomarker of oral squamous cell carcinoma using nanoLC–MS/MS. Clin. Chim. Acta 2014, 436, 121–129. [Google Scholar] [CrossRef]
- Katakura, A.; Yamamoto, N.; Sakuma, T.; Sugahara, K.; Onda, T.; Noguchi, S.; Shibahara, T. A screening test for oral cancer using saliva samples: Proteomic analysis of biomarkers in whole saliva. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 1–5. [Google Scholar] [CrossRef]
- Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [Google Scholar] [CrossRef]
- Cheng, J.; Nonaka, T.; Wong, D. Salivary Exosomes as Nanocarriers for Cancer Biomarker Delivery. Materials 2019, 12, 5593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, S.; Halldin, A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. J. Dent. Biomech. 2012, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, R.; Brokstad, K.A.; Jonsson, M.V.; Delaleu, N.; Skarstein, K. Current concepts on Sjögren’s syndrome—Classification criteria and biomarkers. Eur. J. Oral Sci. 2018, 126, 37–48. [Google Scholar] [CrossRef]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Ovstebo, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res. Ther. 2017, 19, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kageyama, G.; Saegusa, J.; Irino, Y.; Tanaka, S.; Tsuda, K.; Takahashi, S.; Sendo, S.; Morinobu, A. Metabolomics analysis of saliva from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 2015, 182, 149–153. [Google Scholar] [CrossRef] [Green Version]
Authors, Year | Saliva Collection Method; Quantity | Saliva Sample Preparation | Sample Quantity; NMR Solvent; Buffer; NMR Standard (mL) | NMR Buffer Composition | Post-Mixture Preparation | NMR Model (Company) | Temperature of Data Acquisition (K) |
ORAL OR DENTAL PATHOLOGY | |||||||
da Silva et al., 2019 [4] | unstimulated whole saliva, with pipette from floor of the mouth; 0.5 mL | centrifuged (10,000× g for 60 min at 4 °C), stored at −80 °C | 0.17; 0.019 D2O; N/A; 0.004 DSS | N/A | N/A | 600 MHz Avance (Bruker) | 298 |
unstimulated whole saliva, expectoration into sterile plastic tube on ice; 2 mL | centrifuged (10,000× g for 60 min at 4 °C), stored at −80 °C | 0.45; 0.05 D2O; N/A; 0.10 DSS | N/A | N/A | 600 MHz Avance (Bruker) | 298 | |
Fidalgo et al., 2014 [5] | morning, unstimulated whole saliva, with pipette from floor of the mouth, placed in plastic tube; 1 mL | centrifuged (10,000× g for 60 min at 4 °C), stored at −80 °C | 0.54; 0.06 D2O; N/A; 0.01 DSS | N/A | N/A | 400 MHz Avance DRX (Bruker Biospin) | 298 |
Fidalgo et al., 2012 [6] | morning, unstimulated whole saliva, expectoration into plastic tube for 5 min; 3 mL | centrifuged (10,000× g for 60 min at 4 °C), stored at −80 °C | 0.45; 0.05 D2O; N/A; 0.03 TSP | N/A | N/A | 400 MHz Avance (Bruker Biospin) | 298 |
Silwood et al., 1999 [3] | unstimulated whole saliva, into sterile container for 10 min; N/A | centrifuged (5000× g for 30 min at 4 °C), NMR immediately after | 0.60; 0.07 D2O; N/A; TSP | N/A | N/A | 600 MHz AMX (Bruker) | 295 |
PERIODONTAL PATHOLOGY | |||||||
Singh et al., 2019 [7] | morning, unstimulated whole saliva into a sterile container (with 2 mg NaN3) for 10 min; N/A | immediately frozen at −80 °C at collection, thawed, and centrifuged (5000× g for 30 min) | 0.30; N/A; 0.30 buffer; N/A | sodium phosphate buffer | 30 sec vortexing | 800 MHz Avance III (Bruker Biospin) | 300 |
Romano et al., 2019 [8] | morning, unstimulated whole saliva passive drain into sterile tube for 10 min; ~ 1 mL | immediately frozen at −80 °C at collection, thawed, and centrifuged (5000× g for 30 min at 4 °C) | 0.30; N/A; 0.30 buffer; TSP | 70 mM Na2HPO4; 20%(v/v) H2O; 6.15 mM NaN3; 6.64 mM TSP; pH 7.4 | N/A | 600 MHz (Bruker) | 300 |
Romano et al., 2018 [9] | morning, unstimulated whole saliva passive drain into sterile tube for 10 min; ~1 mL | immediately frozen at collection, thawed, and centrifuged (5000× g for 30 min at 4 °C) | 0.30; N/A; 0.30 buffer; TSP | 70 mM Na2HPO4; 20%(v/v) H2O; 6.15 mM NaN3; 6.64 mM TSP; pH 7.4 | N/A | 600 MHz (Bruker Biospin) | 300 |
Rzeznik et al., 2017 [10] | morning, stimulated with paraffin wax; 10 mL | stored at −25 °C, thawed, and centrifuged (2000× g for 2 min) | 0.60; 0.10 D2O; N/A; N/A | N/A | N/A | 500 MHz INOVA (Varian) | 298 |
Garcia-Villaescusa et al., 2018 [15] | morning, unstimulated whole saliva passive drain into sterile container; 1.5 mL | immediately frozen at −80 °C at collection | 0.45; D2O; N/A; 0.04 TSP | N/A | N/A | 600 MHz Avance DRX (Bruker) | 298 |
Singh et al., 2017 [11] | morning, unstimulated whole saliva into a sterile container (with 2 mg NaN3) for 10 min; N/A | immediately frozen at collection, thawed, and centrifuged (5000× g for 30 min at 4 °C) | 0.30; N/A; 0.30 buffer; N/A | sodium phosphate buffer | 30 s vortexing | 800 MHz Avance III (Bruker Biospin) | 300 |
Aimetti et al., 2011 [12] | morning, unstimulated whole saliva, non-forceful expectoration into sterile tube for 10 min; 1 mL | immediately frozen at collection, thawed, and centrifuged (5000× g for 30 min at 4 °C) | 0.30; N/A; 0.30 buffer; TSP | 70 mM Na2HPO4; 20%(v/v) H2O; 6.15 mM NaN3; 6.64 mM TSP; pH 7.4 | 30 sec vortexing | 600 MHz (Bruker Biospin) | 300 |
OTHER CONDITIONS | |||||||
Mikkonen et al., 2018 [13] | morning, unstimulated whole saliva, passive drain into sterile glass cup for 5 min; ~5 mL | centrifuged (14,000 rpm for 6 min), stored at −20 °C | 0.45; D2O; 0.05 buffer; TSP | 1.5 M KH2PO4; 2 mM NaN3; 5.8 mM TSP; D2O; pH 7.4 | centrifuged 10,000× g for 5 min at 4 °C | 600 MHz Avance III HD (Bruker) | sample preheated to 298, 30 min prior acquisition |
Duchemann et al., 2016 [14] | stimulated; N/A | stored at −20 °C | 0.60; 0.10 D2O; N/A; N/A | N/A | N/A | 500 MHz INOVA (Varian) | 298 |
Authors, Year | Diagnosis | Univariate Analysis: Increased Metabolites | Univariate Analysis: Decreased Metabolites | Multivariate Analysis: Increased Metabolites | Multivariate Analysis: Decreased Metabolites |
ORAL OR DENTAL PATHOLOGY | |||||
da Silva et al., 2019 [4] | Breastfeeding infants: Dentate (6 mo+) vs. Edentulous; Oral Candidiasis, Bohn Nodules | N/A | N/A | Dentate vs. Edentulous: lactate, ethanol, acetate, propionate, n-butyrate, n-acetyl sugars | Dentate vs. Edentulous: sugars |
Breastfeeding mothers: Caries; Gingivitis | N/A | N/A | propionate, n-butyrate, lactate, ethanol, propionate, n-acetyl sugar | N/A | |
Fidalgo et al., 2014 [5] | Pediatric Caries vs. 3-month-post-tx 1 | N/A | N/A | Caries vs. Control: acetate, butyrate, propionate, fatty acids | 3-month-post-tx 1 vs. Caries: saccharides, acetate, butyrate, propionate, fatty acids |
Fidalgo et al., 2012 [6] | Pediatric Caries | N/A | N/A | lactate, fatty acid, acetate, butyrate | phenylalanine, propionate, saccharide |
Silwood et al., 1999 [3] | Root Caries | N/A | N/A | no control/comparison | N/A |
PERIODONTAL PATHOLOGY | |||||
Singh et al., 2019 [7] | Chronic Periodontitis vs. post-tx 1 | N/A | N/A | Perio vs. post-perio sx 2: glutamate, lactate, succinate, ethane sulfonate, fucose, proline, ethanol Control vs. post-perio sx 2: lactate, ethane sulfonate, ethanol | Perio vs. post-perio sx 2: pyruvate. Control vs. post-perio sx 2: alanine, glutamate |
Romano et al., 2019 [8] | Generalized Chronic Periodontitis (GCP) vs. post-non-surgical tx 1 (GCPtx) | N/A | N/A | no significance at baseline vs. after tx 1 | N/A |
Romano et al., 2018 [9] | Generalized Chronic Periodontitis (GCP); Generalized Aggressive Periodontitis (GAgP) | N/A | N/A | GCP vs. Control: proline, phenylalanine, isoleucine, valine, tyrosine. GAgP vs. Control: formate, phenylalanine, tyrosine. GCP vs. GAgP: no significant discrimination | GDP vs. Control: pyruvate, N-acetyl groups, lactate. GAgP vs. Control: pyruvate, N-acetyl-groups, lactate, sarcosine |
Rzeznik et al., 2017 [10] | Generalized Chronic Periodontitis (GCP); Generalized Aggressive Periodontitis (GAgP) | butyrate | lactate, GABA | (No significance between GCP and GAgP) Periodontitis vs. Control: butyrate | Periodontitis vs. Control: lactate, methanol, threonine, fucose, acetate, N-acetyl, GABA, 3Dhydroxybutyrate, pyruvate, ethanol |
Garcia-Villaescusa et al., 2018 [15] | Glioblastoma (GBL); Periodontitis | N/A | N/A | Periodontitis vs. Control: caproate, isocaprate + butyrate, isovalerate, isoleucine, isopropanol + methanol, 4-aminobutyrate, choline. GBL vs. Control: propionate, acetate | Periodontitis vs. Control: sucrose, sucrose+glucose+ lysine, lactate+proline, lactate, proline. GBL vs. Control: leucine, valine, isoleucine, alanine, ethanolamine, sucrose |
Singh et al., 2017 [11] | Chronic Periodontitis | N/A | N/A | glutamate, valine, succinate, lactate, leucine | pyruvate |
Aimetti et al., 2011 [12] | Generalized Chronic Periodontitis | N/A | N/A | acetate, g-aminobutyrate, n-butyrate, succinate, trimethylamine, propionate, valine | pyruvate, N-acetyl groups |
OTHER CONDITIONS | |||||
Mikkonen et al., 2018 [13] | Head and neck squamous cell carcinoma | Fucose (6-deoxy-L-galactose), 1,2-propanediol | proline | N/A | fucose+ glycine+ methanol+ proline |
Duchemann et al., 2016 [14] | Sarcoidosis | N/A | N/A | n-butyrate, lactate, acetate | methanol |
Oral Health Assessment: | WNL | NO INTERVENTION Monitoring | NON-SURGICAL INTERVENTION | SURGICAL INTERVENTION Soft or Dental Tissue | SURGICAL INTERVENTION Osseous Tissue | |
DENTAL | ||||||
PERIODONTAL | ||||||
MUCOSA | ||||||
TONGUE | ||||||
OSSEOUS | ||||||
SALIVA | ||||||
Biofluid Sampling Schedule: | ||||||
Initial Appointment | Initial Appointment | Initial Appointment | Initial Appointment | Initial Appointment | ||
- | - | 2–8 wks | 6–8 wks | 4 mo post-op | ||
- | 6 mo | 6 mo post-op | 6 mo post-op | 6 mo post-op | ||
12 mo | 12 mo | 12 mo post-op | 12 mo post-op | 12 mo post-op | ||
- | - | - | - | 18 mo post-op | ||
24 mo | 24 mo | 24 mo post-op | 24 mo post-op | 24 mo post-op | ||
per annum | per annum | per annum | per annum | per annum |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsavochristou, A.; Koumoulis, D. Current Status of Magnetic Resonance on Saliva for Oral and Dental Health Early Diagnosis. Magnetochemistry 2020, 6, 18. https://doi.org/10.3390/magnetochemistry6020018
Katsavochristou A, Koumoulis D. Current Status of Magnetic Resonance on Saliva for Oral and Dental Health Early Diagnosis. Magnetochemistry. 2020; 6(2):18. https://doi.org/10.3390/magnetochemistry6020018
Chicago/Turabian StyleKatsavochristou, Anastasia, and Dimitrios Koumoulis. 2020. "Current Status of Magnetic Resonance on Saliva for Oral and Dental Health Early Diagnosis" Magnetochemistry 6, no. 2: 18. https://doi.org/10.3390/magnetochemistry6020018
APA StyleKatsavochristou, A., & Koumoulis, D. (2020). Current Status of Magnetic Resonance on Saliva for Oral and Dental Health Early Diagnosis. Magnetochemistry, 6(2), 18. https://doi.org/10.3390/magnetochemistry6020018