Magnetic Beads in Marine Toxin Detection: A Review
Abstract
:1. Marine Toxins
2. Magnetic Beads
3. Magnetic Beads in Marine Toxin Detection
3.1. Magnetic Beads as Supports
3.2. Magnetic Beads as Signal Amplifiers
3.3. Magnetic Beads as Capture Agents
3.4. Magnetic Beads to Produce Biorecognition Molecules
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Huang, Y.; Dong, Y.; Han, X.; Wang, S.; Liang, X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins 2018, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Rongo, T.; van Woesik, R. Socioeconomic consequences of ciguatera poisoning in Rarotonga, southern Cook Islands. Harmful Algae 2012, 20, 92–100. [Google Scholar] [CrossRef]
- Campàs, M.; Garibo, D.; Prieto-Simón, B. Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst 2012, 137, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, S.; Kiparissis, S.; Rambla-Alegre, M.; Almarza, S.; Roque, A.; Andree, K.B.; Christidis, A.; Flores, C.; Caixach, J.; Campbell, K. Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool. Food Chem. 2019, 290, 255–262. [Google Scholar] [CrossRef] [PubMed]
- European Comission. Regulation (EU) No 15/2011 of 10 January 2011 amending Regulation (EC) No 2074/2005 as regards recognised testing methods for detecting marine biotoxins in live bivalve molluscs. Off. J. Eur. Union 2011, 6, 3–6. [Google Scholar]
- Reverté, L.; Soliño, L.; Carnicer, O.; Diogène, J.; Campàs, M. Alternative methods for the detection of emerging marine toxins: Biosensors, biochemical assays and cell-based assays. Mar. Drugs 2014, 12, 5719–5763. [Google Scholar] [CrossRef] [PubMed]
- Reverté, L.; Prieto-Simón, B.; Campàs, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, S.; Toldrà, A.; Campàs, M. Trends and prospects on electrochemical biosensors for the detection of marine toxins. In Recent Advances in the Analysis of Marine Toxins, Comprehensive Analytical Chemistry, 1st ed.; Diogène, J., Campàs, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 78, pp. 303–341. [Google Scholar] [CrossRef]
- Ruffert, C. Magnetic bead—Magic bullet. Micromachines 2016, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett. 2018, 29, 1601–1608. [Google Scholar] [CrossRef]
- Duan, M.; Shapter, J.G.; Qi, W.; Yang, S.; Gao, G. Recent progress in magnetic nanoparticles: Synthesis, properties, and applications. Nanotechnology 2018, 29, 452001. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef] [PubMed]
- Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Pastucha, M.; Farka, Z.; Lacina, K.; Mikušová, Z.; Skládal, P. Magnetic nanoparticles for smart electrochemical immunoassays: A review on recent developments. Microchim. Acta 2019, 186, 312. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Barthelmebs, L.; Marty, J.-L. Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid. Anal. Chim. Acta 2011, 690, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.B.; Hayat, A.; Sassolas, A.; Alonso, G.A.; Munoz, R.; Marty, J.-L. Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 2012, 99, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhou, J.; Su, K.; Hu, N.; Wang, P. A novel quantum dot fluorescence immunosensor based on magnetic beads and portable flow cytometry for detection of okadaic acid. Procedia Technol. 2017, 27, 214–216. [Google Scholar] [CrossRef]
- Pan, Y.; Wei, X.; Liang, T.; Zhou, J.; Wan, H.; Hu, N.; Wang, P. A magnetic beads-based portable flow cytometry immunosensor for in-situ detection of marine biotoxin. Biomed. Microdevices 2018, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Barthelmebs, L.; Sassolas, A.; Marty, J.-L. Development of a novel label-free amperometric immunosensor for the detection of okadaic acid. Analytica Chim. Acta 2012, 724, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Garibo, D.; Devic, E.; Marty, J.-L.; Diogène, J.; Unzueta, I.; Blázquez, M.; Campàs, M. Conjugation of genetically engineered protein phosphatases to magnetic particles for okadaic acid detection. J. Biotechnol. 2012, 157, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, S.; Rambla-Alegre, M.; Samdal, I.A.; Miles, C.O.; Kilcoyne, J.; Diogène, J.; O’Sullivan, C.K.; Campàs, M. Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens. Bioelectron. 2017, 92, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, Y.; Wu, J.; Wang, X.; Liu, Y. An Amperometric Immunosensor based on an ionic liquid and single-walled carbon nanotube composite electrode for detection of Tetrodotoxin in pufferfish. J. Agric. Food Chem. 2016, 64, 6888–6894. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Gui, R.; Sun, J.; Wang, Y. Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin. Talanta 2018, 176, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, L.; Tang, D.; Liu, B.; Li, J.; Chen, G. Simultaneous multiplexed stripping voltammetric monitoring of marine toxins in seafood based on distinguishable metal nanocluster-labeled molecular tags. J. Agric. Food Chem. 2012, 60, 8974–8982. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Chen, J.; Zeng, X.; Xu, L.; Wu, Y.; Fu, F. A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens. Bioelectron. 2019, 128, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Choi, S.-J. Immunoassay of paralytic shellfish toxins by moving magnetic particles in a stationary liquid-phase lab-on-a-chip. Biosens. Bioelectron. 2015, 66, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Choi, S.-J. Development of an improved stationary liquid-phase lab-on-a-chip for the field monitoring of paralytic shellfish toxins. BioChip J. 2017, 11, 30–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Luan, W.; Li, X.; Liu, Y.; Luo, X. Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement. Anal. Chim. Acta 2015, 888, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Garibo, D.; Campbell, K.; Casanova, A.; De La Iglesia, P.; Fernández-Tejedor, M.; Diogène, J.; Elliott, C.; Campàs, M. SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sensors and Actuators B Chem. 2014, 190, 822–828. [Google Scholar] [CrossRef]
- Devlin, R.; Campbell, K.; Kawatsu, K.; Elliott, C. Physical and immunoaffinity extraction of paralytic shellfish poisoning toxins from cultures of the dinoflagellate Alexandrium tamarense. Harmful Algae 2011, 10, 542–548. [Google Scholar] [CrossRef]
- Bragg, W.A.; Garrett, A.; Hamelin, E.I.; Coleman, R.M.; Campbell, K.; Elliott, C.T.; Johnson, R.C. Quantitation of saxitoxin in human urine using immunocapture extraction and LC–MS. Bioanalysis 2018, 10, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, Z.; Wu, H.; Peng, J.; Zhai, Y.; Guo, M. Selective enrichment and quantification of okadaic acid in shellfish using an immunomagnetic-bead-based liquid chromatography with tandem mass spectrometry assay. J. Sep. Sci. 2019, 42, 1423–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neely, B.A.; Soper, J.L.; Greig, D.J.; Carlin, K.P.; Favre, E.G.; Gulland, F.M.; Almeida, J.S.; Janech, M.G. Serum profiling by MALDI-TOF mass spectrometry as a diagnostic tool for domoic acid toxicosis in California sea lions. Proteome Sci. 2012, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagumo, Y.; Oguri, H.; Tsumoto, K.; Shindo, Y.; Hirama, M.; Tsumuraya, T.; Fujii, I.; Tomioka, Y.; Mizugaki, M.; Kumagai, I. Phage-display selection of antibodies to the left end of CTX3C using synthetic fragments. J. Immunol. Methods 2004, 289, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Handy, S.M.; Yakes, B.J.; DeGrasse, J.A.; Campbell, K.; Elliott, C.T.; Kanyuck, K.M.; DeGrasse, S.L. First report of the use of a saxitoxin–protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 2013, 61, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Hu, B.; Zheng, X.; Cao, Y.; Liu, D.; Sun, M.; Jiao, B.; Wang, L. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Biosens. Bioelectron. 2016, 79, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zheng, X.; Hu, B.; Sun, M.; Wu, J.; Jiao, B.; Wang, L. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin. Biosens. Bioelectron. 2017, 89, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Duan, N.; Xia, Y.; Hun, X.; Wang, H.; Wang, Z. Magnetic Separation-Based Multiple SELEX for Effectively Selecting Aptamers against Saxitoxin, Domoic Acid, and Tetrodotoxin. J. Agric. Food Chem. 2018, 66, 9801–9809. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, Z.-S.; Wang, D.-X.; Li, L.; Hu, P.; Gong, S.; Li, Y.-S.; Cui, C.; Wu, Z.-C.; Gao, Y. Generation of internal-image functional aptamers of okadaic acid via magnetic-bead SELEX. Mar. Drugs 2015, 13, 7433–7445. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.; Silke, J. Winter toxicity of unknown aetiology in mussels. Harmful Algae News 1996, 14, 2. [Google Scholar]
- Mello, D.F.; De Oliveira, E.S.; Vieira, R.C.; Simoes, E.; Trevisan, R.; Dafre, A.L.; Barracco, M.A. Cellular and transcriptional responses of Crassostrea gigas hemocytes exposed in vitro to brevetoxin (PbTx-2). Mar. Drugs 2012, 10, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Deeds, J.; Landsberg, J.; Etheridge, S.; Pitcher, G.; Longan, S. Non-traditional vectors for paralytic shellfish poisoning. Mar. Drugs 2008, 6, 308–348. [Google Scholar] [CrossRef] [PubMed]
MB Use | Target | MB Functionalization | Conjugation to | Strategy | LOD | Applicability | Ref. |
---|---|---|---|---|---|---|---|
Support | OA | Streptavidin | Biotinylated OA | Colorimetric immunoassay Electrochemical immunosensor | 0.8-1.99 µg/L 0.38-0.99 µg/L | Spiked mussels | [17] |
Support | OA | Streptavidin | Biotinylated OA | Electrochemical immunosensor | 0.15 µg/L | Spiked mussels | [18] |
Support | OA | Carboxylic acid groups | OA-BSA | Fluorescence immunosensor | 0.05 µg/L | - | [19] |
Support | OA | Streptavidin | Biotinylated OA | Colorimetric immunoassay Fluorescence immunosensor | 0.5 µg/L 0.05 µg/L | Spiked mussels | [20] |
Support | OA | Protein G | Anti-OA mAb | Colorimetric immunoassay Electrochemical immunosensor | 1 µg/L 0.5 µg/L | Spiked mussels | [21] |
Support | OA | Ni-iminodiacetic acid | Hys tail of PP2A | Colorimetric enzyme assay | 30.1 µg/L | Spiked mussels, wedge clams, flat oysters and Pacific oysters | [22] |
Support | AZA | Protein G | Anti-AZA pAb | Colorimetric immunoassay Electrochemical immunoassay Electrochemical immunosensor | 1.1 µg/L 1.0 µg/L 3.7 µg/L | Naturally-contaminated mussels | [23] |
Support | TTX | Maleimide | TTX | Electrochemical immunosensor | 1.2 µg/L | Pufferfish | [4] |
Support | TTX | Polyethylene glycol | BSA-TTX | Electrochemical immunoassay | 5 µg/L | Pufferfish | [24] |
Support | TTX | Thiodiglycolic acid | Anti-TTX aptamer | Fluorescence aptamer assay | 0.06 µg/L | Spiked human body fluids | [25] |
Support | BTX-2/DTX-1 | Epoxy groups | anti-BTX-2 mAb anti-DTX-1 mAb | Electrochemical immunoassay | 1.8 ng/L 2.2 ng/L | Spiked mussels, razor clams and cockles | [26] |
Support | STX | Avidin | Secondary Ab | Electrochemical immunosensor | 1.2 ng/L | Spiked seawater and mussels | [27] |
Support | STX | Protein G | Anti-STX pAb | Colorimetric immunoassay | ~3 µg/L | - | [28] |
Support | STX | Protein-G | Anti-STX pAb | Colorimetric immunoassay | ~6 ng/L | Naturally-contaminated mussels | [29] |
Support | CTX3C | Epoxy groups | Anti-CTX3C mAbs | Electrochemical immunoassay | 0.09 ng/L | Spiked and naturally-contaminated fish | [30] |
Signal amplifier | OA | Protein G | Anti-OA mAb | SPR immunosensor | 1.2 µg/L | Naturally-contaminated mussels | [31] |
Capture agent | PSP toxins | Glutaraldehyde | Anti-PSP mAb | HPLC | - | Alexandrium tamarense culture | [32] |
Capture agent | STX | Protein G | Anti-STX mAb | LC–MS/MS | 0.526 µg/L | Spiked human urine | [33] |
Capture agent | OA | Protein G | Anti-OA mAb | LC–MS/MS | 0.3 µg/L | Naturally-contaminated oysters, mussels, clams and scallops | [34] |
Capture agent | DA | C8 alkyl groups | - | MALDI-TOF | - | Sea lion serum | [35] |
Production of biorecognition molecules | CTX3C | Streptavidin | Biotinylated CTX3C fragment | Antibody phage display | - | - | [36] |
Production of biorecognition molecules | STX | Epoxy groups | KLH-STX | Aptamer SELEX | - | - | [37] |
Production of biorecognition molecules | GTX1/4 | Amino groups | Carboxylated GTX1/4 | Aptamer SELEX | - | - | [38] |
Production of biorecognition molecules | PlTX | Carboxylic acid groups | PlTX | Aptamer SELEX; biolayer interferometry aptasensor | 0.04 ng/L | Spiked shellfish and seawater | [39] |
Production of biorecognition molecules | DA STX TTX | - | GO | Multiplex aptamer SELEX; fluorescence aptamer assay | 0.45 µg/L 1.21 µg/L 0.39 µg/L | - | [40] |
Production of biorecognition molecules | OA | Tosyl groups | Anti-OA F(ab’)2 fragment | Aptamer SELEX | 0.33 µg/L | - | [41] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaiani, G.; O’Sullivan, C.K.; Campàs, M. Magnetic Beads in Marine Toxin Detection: A Review. Magnetochemistry 2019, 5, 62. https://doi.org/10.3390/magnetochemistry5040062
Gaiani G, O’Sullivan CK, Campàs M. Magnetic Beads in Marine Toxin Detection: A Review. Magnetochemistry. 2019; 5(4):62. https://doi.org/10.3390/magnetochemistry5040062
Chicago/Turabian StyleGaiani, Greta, Ciara K. O’Sullivan, and Mònica Campàs. 2019. "Magnetic Beads in Marine Toxin Detection: A Review" Magnetochemistry 5, no. 4: 62. https://doi.org/10.3390/magnetochemistry5040062
APA StyleGaiani, G., O’Sullivan, C. K., & Campàs, M. (2019). Magnetic Beads in Marine Toxin Detection: A Review. Magnetochemistry, 5(4), 62. https://doi.org/10.3390/magnetochemistry5040062