Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining and Characterization of Magnetic Polyelectrolite Capsules Containing Fe3O4 Nanoparticles
2.2. In Vivo Experiment
3. Results
3.1. Theoretical Model
3.2. Magnetite Containing Capsules
3.3. In Vitro Experiment
3.4. In Vivo Experiment
4. Discussion
4.1. Estimation of Magnetic Field Parameters
4.2. Estimation of Maximal Distance from the Magnet to the Target
4.3. Limitations of Our Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOX | doxorubicin |
TEM | transmission electron microscopy |
PAH | polyallylamine hydrochloride |
DexS | dextran sulfate |
PSS | polystyrene sulfonate sodium |
PBS | phosphate buffered saline |
References
- Jose, G.; Lu, Y.-J.; Chen, H.-A.; Hsu, H.-L.; Hung, J.-T.; Anilkumar, T.S.; Chen, J.-P. Hyaluronic Acid Modified Bubble-Generating Magnetic Liposomes for Targeted Delivery of Doxorubicin. J. Magn. Magn. Mater. 2019, 474, 355–364. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Chuang, E.-Y.; Cheng, Y.-H.; Anilkumar, T.S.; Chen, H.-A.; Chen, J.-P. Thermosensitive Magnetic Liposomes for Alternating Magnetic Field-Inducible Drug Delivery in Dual Targeted Brain Tumor Chemotherapy. Chem. Eng. J. 2019, 373, 720–733. [Google Scholar] [CrossRef]
- Huang, C.; Tang, Z.; Zhou, Y.; Zhou, X.; Jin, Y.; Li, D.; Yang, Y.; Zhou, S. Magnetic Micelles as a Potential Platform for Dual Targeted Drug Delivery in Cancer Therapy. Int. J. Pharm. 2012, 429, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Paul, W.; Sharma, C.P. Inorganic Nanoparticles for Targeted Drug Delivery. In Biointegration of Medical Implant Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–373. ISBN 978-0-08-102680-9. [Google Scholar]
- Ashi, M.; Indrajit, R.; Sona, G. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemestry 2022, 8, 107. [Google Scholar] [CrossRef]
- Shabatina, T.I.; Vernaya, O.I.; Shabatin, V.P.; Melnikov, M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemestry 2020, 6, 30. [Google Scholar] [CrossRef]
- Podgórna, K.; Szczepanowicz, K. Synthesis of Polyelectrolyte Nanocapsules with Iron Oxide (Fe3O4) Nanoparticles for Magnetic Targeting. Colloids Surf. Physicochem. Eng. Asp. 2016, 505, 132–137. [Google Scholar] [CrossRef]
- Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate Anticancer Drug Delivery to Breast Cancer Cell Lines by Iron Oxide Magnetic Based Nanocarrier. J. Biomed. Mater. Res. A 2019, 107, 2492–2500. [Google Scholar] [CrossRef]
- Lotfipour, F.; Azhar Shekoufeh, L.B. Magnetic Nanoparticles for Antimicrobial Drug Delivery. Pharmazie 2012, 67, 817–821. [Google Scholar] [CrossRef]
- Du, X.; Chen, K.; Kuriyavar, S.; Kopke, R.D.; Grady, B.P.; Bourne, D.H.; Li, W.; Dormer, K.J. Magnetic Targeted Delivery of Dexamethasone Acetate Across the Round Window Membrane in Guinea Pigs. Otol. Neurotol. 2013, 34, 41–47. [Google Scholar] [CrossRef]
- McBain, S.; Yiu, H.; Dobson, J. Magnetic Nanoparticles for Gene and Drug Delivery. Int. J. Nanomed. 2008, 3, 169–180. [Google Scholar] [CrossRef]
- Solaro, R.; Chiellini, F.; Battisti, A. Targeted Delivery of Protein Drugs by Nanocarriers. Materials 2010, 3, 1928–1980. [Google Scholar] [CrossRef]
- Koudan, E.V.; Zharkov, M.N.; Gerasimov, M.V.; Karshieva, S.S.; Shirshova, A.D.; Chrishtop, V.V.; Kasyanov, V.A.; Levin, A.A.; Parfenov, V.A.; Karalkin, P.A.; et al. Magnetic Patterning of Tissue Spheroids Using Polymer Microcapsules Containing Iron Oxide Nanoparticles. ACS Biomater. Sci. Eng. 2021, 7, 5206–5214. [Google Scholar] [CrossRef] [PubMed]
- Verkhovskii, R.; Ermakov, A.; Grishin, O.; Makarkin, M.A.; Kozhevnikov, I.; Makhortov, M.; Kozlova, A.; Salem, S.; Tuchin, V.; Bratashov, D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022, 27, 6073. [Google Scholar] [CrossRef]
- Blümler, P.; Friedrich, R.P.; Pereira, J.; Baun, O.; Alexiou, C.; Mailänder, V. Contactless Nanoparticle-Based Guiding of Cells by Controllable Magnetic Fields. Nanotechnol. Sci. Appl. 2021, 14, 91–100. [Google Scholar] [CrossRef]
- Nacev, A.; Komaee, A.; Sarwar, A.; Probst, R.; Kim, S.H.; Emmert-Buck, M.; Shapiro, B. Towards Control of Magnetic Fluids in Patients: Directing Therapeutic Nanoparticles to Disease Locations. IEEE Control. Syst. 2012, 32, 32–74. [Google Scholar] [CrossRef]
- Baun, O.; Blümler, P. Permanent magnet system to guide superparamagnetic particles. J. Magn. Magn. Mater. 2017, 439, 294–304. [Google Scholar] [CrossRef]
- Blümler, P. Magnetic Guiding with Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells. Cells 2021, 10, 2708. [Google Scholar] [CrossRef]
- Rivière, C.; Martina, M.-S.; Tomita, Y.; Wilhelm, C.; Tran Dinh, A.; Ménager, C.; Pinard, E.; Lesieur, S.; Gazeau, F.; Seylaz, J. Magnetic Targeting of Nanometric Magnetic Fluid–Loaded Liposomes to Specific Brain Intravascular Areas: A Dynamic Imaging Study in Mice. Radiology 2007, 244, 439–448. [Google Scholar] [CrossRef]
- Svenskaya, Y.; Garello, F.; Lengert, E.; Kozlova, A.; Verkhovskii, R.; Bitonto, V.; Ruggiero, M.R.; German, S.; Gorin, D.; Terreno, E. Biodegradable Polyelectrolyte/Magnetite Capsules for MR Imaging and Magnetic Targeting of Tumors. Nanotheranostics 2021, 5, 362–377. [Google Scholar] [CrossRef]
- Novoselova, M.V.; German, S.V.; Sindeeva, O.A.; Kulikov, O.A.; Minaeva, O.V.; Brodovskaya, E.P.; Ageev, V.P.; Zharkov, M.N.; Pyataev, N.A.; Sukhorukov, G.B.; et al. Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects. Polymers 2019, 11, 1082. [Google Scholar] [CrossRef]
- Janikowska, A.; Matuszak, J.; Lyer, S.; Schreiber, E.; Unterweger, H.; Zaloga, J.; Groll, J.; Alexiou, C.; Cicha, I. A Novel Human Artery Model to Assess the Magnetic Accumulation of SPIONs under Flow Conditions. Sci. Rep. 2017, 7, 42314. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Ramaswamy, B.; Horton, E.; Gangapuram, S.; Nacev, A.; Depireux, D.; Shimoji, M.; Shapiro, B. Quantifying the Motion of Magnetic Particles in Excised Tissue: Effect of Particle Properties and Applied Magnetic Field. J. Magn. Magn. Mater. 2015, 393, 243–252. [Google Scholar] [CrossRef]
- Alexiou, C.; Jurgons, R.; Schmid, R.; Hilpert, A.; Bergemann, C.; Parak, F.; Iro, H. In Vitro and in Vivo Investigations of Targeted Chemotherapy with Magnetic Nanoparticles. J. Magn. Magn. Mater. 2005, 293, 389–393. [Google Scholar] [CrossRef]
- Chen, H.; Kaminski, M.D.; Pytel, P.; Macdonald, L.; Rosengart, A.J. Capture of Magnetic Carriers within Large Arteries Using External Magnetic Fields. J. Drug Target. 2008, 16, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lübbe, A.S.; Bergemann, C.; Riess, H.; Schriever, F.; Reichardt, P.; Possinger, K.; Matthias, M.; Dörken, B.; Herrmann, F.; Gürtler, R.; et al. Clinical Experiences with Magnetic Drug Targeting: A Phase I Study with 4′-Epidoxorubicin in 14 Patients with Advanced Solid Tumors. Cancer Res. 1996, 56, 4686–4693. [Google Scholar]
- Sharma, S.; Ram, P. Capturing of Magnetic Nanoparticles in a Fluidic Channel for Magnetic Drug Targeting. J. Nanosci. Nanotechnol. 2021, 21, 3588–3595. [Google Scholar] [CrossRef]
- Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B. The Behaviors of Ferromagnetic Nano-Particles in and around Blood Vessels under Applied Magnetic Fields. J. Magn. Magn. Mater. 2011, 323, 651–668. [Google Scholar] [CrossRef]
- Heidsieck, A.; Vosen, S.; Zimmermann, K.; Wenzel, D.; Gleich, B. Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels. Mol. Pharm. 2012, 9, 2029–2038. [Google Scholar] [CrossRef]
- Sharma, S.; Katiyar, V.K.; Singh, U. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field. J. Magn. Magn. Mater. 2015, 379, 102–107. [Google Scholar] [CrossRef]
- David, A.E.; Cole, A.J.; Chertok, B.; Park, Y.S.; Yang, V.C. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo. J. Control. Release 2011, 152, 67–75. [Google Scholar] [CrossRef]
- Furlani, E.J.; Furlani, E.P. A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature. J. Magn. Magn. Mater. 2007, 312, 187–193. [Google Scholar] [CrossRef]
- Shaw, S.; Murthy, P.V.S.N.; Pradhan, S.C. Effect of Non-Newtonian Characteristics of Blood on Magnetic Targeting in the Impermeable Micro-Vessel. J. Magn. Magn. Mater. 2010, 322, 1037–1043. [Google Scholar] [CrossRef]
- Grief, A.D.; Richardson, G. Mathematical Modelling of Magnetically Targeted Drug Delivery. J. Magn. Magn. Mater. 2005, 293, 455–463. [Google Scholar] [CrossRef]
- Sharifi, A.; Motlagh, S.Y.; Badfar, H. Numerical Investigation of Magnetic Drug Targeting Using Magnetic Nanoparticles to the Aneurysmal Vessel. J. Magn. Magn. Mater. 2019, 474, 236–245. [Google Scholar] [CrossRef]
- Zharkov, M.N.; Brodovskaya, E.P.; Kulikov, O.A.; Gromova, E.V.; Ageev, V.P.; Atanova, A.V.; Kozyreva, Z.V.; Tishin, A.M.; Pyatakov, A.P.; Pyataev, N.A.; et al. Enhanced Cytotoxicity Caused by AC Magnetic Field for Polymer Microcapsules Containing Packed Magnetic Nanoparticles. Colloids Surf. B Biointerfaces 2021, 199, 111548. [Google Scholar] [CrossRef] [PubMed]
- Shushunova, N.A.; Mayorova, O.A.; Prikhozhdenko, E.S.; Goryacheva, O.A.; Kulikov, O.A.; Plastun, V.O.; Gusliakova, O.I.; Muslimov, A.R.; Inozemtseva, O.A.; Pyataev, N.A.; et al. Targeted Therapy for Glomerulonephritis Using Arterial Delivery of Encapsulated Etanercept. Int. J. Mol. Sci. 2023, 24, 2784. [Google Scholar] [CrossRef]
- Pozdnyakov, I.P.; Plyusnin, V.F.; Grivin, V.P.; Vorobyev, D.Y.; Bazhin, N.M.; Pagés, S.; Vauthey, E. Photochemistry of Fe(III) and Sulfosalicylic Acid Aqueous Solutions. J. Photochem. Photobiol. Chem. 2006, 182, 75–81. [Google Scholar] [CrossRef]
- Laginha, K.M.; Verwoert, S.; Charrois, G.J.R.; Allen, T.M. Determination of Doxorubicin Levels in Whole Tumor and Tumor Nuclei in Murine Breast Cancer Tumors. Clin. Cancer Res. 2005, 11, 6944–6949. [Google Scholar] [CrossRef]
- Laura Soriano, M.; Carrillo-Carrion, C.; Ruiz-Palomero, C.; Valcárcel, M. Cyclodextrin-Modified Nanodiamond for the Sensitive Fluorometric Determination of Doxorubicin in Urine Based on Its Differential Affinity towards β/γ-Cyclodextrins. Microchim. Acta 2018, 185, 115. [Google Scholar] [CrossRef]
- Furlani, E.P. Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Zablotskii, V.; Polyakova, T.; Lunov, O.; Dejneka, A. How a High-Gradient Magnetic Field Could Affect Cell Life. Sci. Rep. 2016, 6, 37407. [Google Scholar] [CrossRef]
- Gruber, S.; Spielauer, I.; Böhme, S.; Baron, D.; Markstaller, K.; Ullrich, R.; Klein, K.U. Real-time in-vivo imaging of pulmonary capillary perfusion using probe-based confocal laser scanning endomicroscopy in pigs. Eur. J. Anaesthesiol. 2015, 32, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Windberger, U.; Bartholovitsch, A.; Plasenzotti, R.; Korak, K.J.; Heinze, G. Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggregation in Nine Mammalian Species: Reference Values and Comparison of Data. Exp. Physiol. 2003, 88, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Encinas, A.; Araujo, E.; Song, S. Magnetic Matrices Used in High Gradient Magnetic Separation (HGMS): A Review. Results Phys. 2017, 7, 4278–4286. [Google Scholar] [CrossRef]
Capsule Radius, μm | Mass of Fe3O4 Per Capsule, pg | , pg/μm | Optimal Diameter of the Magnet, cm | Distance from the Magnet, cm | Ref. | |
---|---|---|---|---|---|---|
1.25 | 1.5 | 1.20 | 2620 | 1.81 | 0.61 | |
0.41 | 0.65 | 1.59 | 1980 | 2.50 | 0.84 | |
2.1 | 5.7 | 2.71 | 1160 | 4.10 | 1.37 | [36] |
0.25 | 0.29 | 1.16 | 2710 | 1.83 | 0.61 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharkov, M.N.; Pyataev, M.A.; Yakobson, D.E.; Ageev, V.P.; Kulikov, O.A.; Shlyapkina, V.I.; Khmelenin, D.N.; Balykova, L.A.; Sukhorukov, G.B.; Pyataev, N.A. Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment. Magnetochemistry 2025, 11, 60. https://doi.org/10.3390/magnetochemistry11070060
Zharkov MN, Pyataev MA, Yakobson DE, Ageev VP, Kulikov OA, Shlyapkina VI, Khmelenin DN, Balykova LA, Sukhorukov GB, Pyataev NA. Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment. Magnetochemistry. 2025; 11(7):60. https://doi.org/10.3390/magnetochemistry11070060
Chicago/Turabian StyleZharkov, Mikhail N., Mikhail A. Pyataev, Denis E. Yakobson, Valentin P. Ageev, Oleg A. Kulikov, Vasilisa I. Shlyapkina, Dmitry N. Khmelenin, Larisa A. Balykova, Gleb B. Sukhorukov, and Nikolay A. Pyataev. 2025. "Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment" Magnetochemistry 11, no. 7: 60. https://doi.org/10.3390/magnetochemistry11070060
APA StyleZharkov, M. N., Pyataev, M. A., Yakobson, D. E., Ageev, V. P., Kulikov, O. A., Shlyapkina, V. I., Khmelenin, D. N., Balykova, L. A., Sukhorukov, G. B., & Pyataev, N. A. (2025). Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment. Magnetochemistry, 11(7), 60. https://doi.org/10.3390/magnetochemistry11070060