Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = polyelectrolyte capsules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6483 KB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 703
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 2780 KB  
Article
Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment
by Mikhail N. Zharkov, Mikhail A. Pyataev, Denis E. Yakobson, Valentin P. Ageev, Oleg A. Kulikov, Vasilisa I. Shlyapkina, Dmitry N. Khmelenin, Larisa A. Balykova, Gleb B. Sukhorukov and Nikolay A. Pyataev
Magnetochemistry 2025, 11(7), 60; https://doi.org/10.3390/magnetochemistry11070060 - 14 Jul 2025
Viewed by 1075
Abstract
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the [...] Read more.
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the spatial distribution of magnetic capsules has been obtained. We propose to characterize the interaction between the magnetic field and the capsules using a single vector, which we call “specific magnetic force”. To test our theory, we performed experiments on a model of a capillary bed and on a living organism with two types of magnetic capsules that differ in size and amount of magnetic material. The experimental results show that the distribution of the capsules in the field correlated with the theory, but there were fewer actually accumulated capsules than predicted by the theory. In the weaker fields, the difference was more significant than in stronger ones. We proposed an explanation for this phenomenon based on the assumption that a certain level of magnetic force is needed to keep the capsules close to the capillary wall. We also suggested a formula for the relationship between the probability of capsule precipitation and the magnetic force. We found the effective value of a specific magnetic force at which all the capsules attracted by the magnet reach the capillary wall. This value can be considered as the minimum level for the field at which it is, in principle, possible to achieve a significant magnetic control effect. We demonstrated that for each type of capsule, there is a specific radius of magnet for which the effective magnetic force is achieved at the largest possible distance from the magnet’s surface. For the capsules examined in this study, the maximum distance where the effective field can be achieved does not exceed 1.5 cm. The results of the study contribute to our understanding of the behavior of magnetic particles in the capillaries of living organisms when exposed to a magnetic field. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Graphical abstract

17 pages, 2920 KB  
Article
Core-Dependent Desorption Behavior of Polyelectrolyte Microcapsules in NaCl and Na2SO4 Solutions
by Alexey V. Dubrovskii, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(12), 1706; https://doi.org/10.3390/polym17121706 - 19 Jun 2025
Cited by 1 | Viewed by 913
Abstract
Polyelectrolyte microcapsules (PMCs) have a wide range of applications in fields such as medicine, pharmacology, diagnostics, etc., and can be used as targeted drug delivery vehicles, diagnostic systems and smart materials. However, the existing research indicates that the type of core can influence [...] Read more.
Polyelectrolyte microcapsules (PMCs) have a wide range of applications in fields such as medicine, pharmacology, diagnostics, etc., and can be used as targeted drug delivery vehicles, diagnostic systems and smart materials. However, the existing research indicates that the type of core can influence the properties of the PMC shell. Consequently, we hypothesized that the type of core used for the formation of the PMC may also affect the desorption of the shell’s polyelectrolytes. In this study, the desorption of polyelectrolytes of PMCs, formed on polystyrene cores (PMCPs) and MnCO3 (PMCMn) and CaCO3 cores (PMCCa), incubated in either NaCl or Na2SO4 solution, was investigated. It was demonstrated that the low ionic strength of the solution (up to 200 mM NaCl) has a negligible effect on the desorption of PMCCa. However, in the case of PMCPs and PMCMn, an increase in desorption was observed at 100 and 200 mM NaCl. Increasing the ionic strength to 1000 mM and 2000 mM resulted in a gradual increase in the desorption of the polyelectrolytes PMCCa and PMCMn, while for PMCPs, the maximum desorption was already observed at 1000 mM. Additionally, an increase in desorption was detected upon incubation in various concentrations of sodium sulfate (5–50 mM), although the desorption did not differ significantly across all types of PMCs. Nevertheless, for PMCMn, the maximum desorption was observed at a sodium sulfate concentration of 50 mM, whereas for other types of capsules, the maximum desorption occurred at a concentration of 100 mM. These results support the hypothesis that the type of core used in the formation of PMCs influences the desorption of the shell polyelectrolyte. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 3344 KB  
Article
Chondroitin Sulfate/Cyanocobalamin–Chitosan Polyelectrolyte Complexes for Improved Oral Delivery of Colistin
by Natallia V. Dubashynskaya, Andrey Y. Borovskoy, Anton N. Bokatyi, Tatiana S. Sall, Tatiana S. Egorova, Elena V. Demyanova, Ekaterina A. Murashko and Yury A. Skorik
Polysaccharides 2025, 6(1), 21; https://doi.org/10.3390/polysaccharides6010021 - 7 Mar 2025
Cited by 1 | Viewed by 2008
Abstract
Introduction. The rise of multidrug resistance in Gram-negative ESKAPE pathogens is a critical challenge for modern healthcare. Colistin (CT), a peptide antibiotic, remains a last-resort treatment for infections caused by these superbugs due to its potent activity against Gram-negative bacteria and the rarity [...] Read more.
Introduction. The rise of multidrug resistance in Gram-negative ESKAPE pathogens is a critical challenge for modern healthcare. Colistin (CT), a peptide antibiotic, remains a last-resort treatment for infections caused by these superbugs due to its potent activity against Gram-negative bacteria and the rarity of resistance. However, its clinical use is severely limited by high nephro- and neurotoxicity, low oral bioavailability, and other adverse effects. A promising strategy to improve the biopharmaceutical properties and safety profile of antibiotics is the development of biopolymer-based delivery systems, also known as nanoantibiotics. Objective. The aim of this study was to develop polyelectrolyte complexes (PECs) for the oral delivery of CT to overcome its major limitations, such as poor bioavailability and toxicity. Methods. PECs were formulated using chondroitin sulfate (CHS) and a cyanocobalamin–chitosan conjugate (CSB12). Vitamin B12 was incorporated as a targeting ligand to enhance intestinal permeability through receptor-mediated transport. The resulting complexes (CHS-CT-CSB12) were characterized for particle size, ζ-potential, encapsulation efficiency, and drug release profile under simulated gastrointestinal conditions (pH 1.6, 6.5, and 7.4). The antimicrobial activity of the encapsulated CT was evaluated in vitro against Pseudomonas aeruginosa. Results. The CHS-CT-CSB12 PECs exhibited a hydrodynamic diameter of 446 nm and a ζ-potential of +28.2 mV. The encapsulation efficiency of CT reached 100% at a drug loading of 200 µg/mg. In vitro release studies showed that approximately 70% of the drug was released within 1 h at pH 1.6 (simulating gastric conditions), while a cumulative CT release of 80% over 6 h was observed at pH 6.5 and 7.4 (simulating intestinal conditions). This release profile suggests the potential use of enteric-coated capsules or specific administration guidelines, such as taking the drug on an empty stomach with plenty of water. The antimicrobial activity of encapsulated CT against P. aeruginosa was comparable to that of the free drug, with a minimum inhibitory concentration of 1 µg/mL for both. The inclusion of vitamin B12 in the PECs significantly improved intestinal permeability, as evidenced by an apparent permeability coefficient (Papp) of 1.1 × 10−6 cm/s for CT. Discussion. The developed PECs offer several advantages over conventional CT formulations. The use of vitamin B12 as a targeting ligand enhances drug absorption across the intestinal barrier, potentially increasing oral bioavailability. In addition, the controlled release of CT in the intestinal environment reduces the risk of systemic toxicity, particularly nephro- and neurotoxicity. These findings highlight the potential of CHS-CT-CSB12 PECs as a nanotechnology-based platform for improving the delivery of CT and other challenging antibiotics. Conclusions. This study demonstrates the promising potential of CHS-CT-CSB12 PECs as an innovative oral delivery system for CT that addresses its major limitations and improves its therapeutic efficacy. Future work will focus on in vivo evaluation of the safety and efficacy of the system, as well as exploring its applicability for delivery of other antibiotics with similar challenges. Full article
Show Figures

Figure 1

13 pages, 6545 KB  
Article
Layer-by-Layer Assembling and Capsule Formation of Polysaccharide-Based Polyelectrolytes Studied by Whispering Gallery Mode Experiments and Confocal Laser Scanning Microscopy
by Stefan Wagner, Mateusz Olszyna, Algi Domac, Thomas Heinze, Martin Gericke and Lars Dähne
Polysaccharides 2024, 5(3), 422-434; https://doi.org/10.3390/polysaccharides5030026 - 14 Aug 2024
Viewed by 2229
Abstract
The layer-by-layer (LbL) assembling of oppositely charged polyelectrolytes was studied using semi-synthetic polysaccharide derivatives, namely the polycations 6-aminoethylamino-6-deoxy cellulose (ADC) and cellulose (2-(ethylamino)ethylcarbamate (CAEC), as well as the polyanion cellulose sulfate (CS). The synthetic polymers poly(allylamine) (PAH) and poly(styrene sulfonate) (PSS) were employed [...] Read more.
The layer-by-layer (LbL) assembling of oppositely charged polyelectrolytes was studied using semi-synthetic polysaccharide derivatives, namely the polycations 6-aminoethylamino-6-deoxy cellulose (ADC) and cellulose (2-(ethylamino)ethylcarbamate (CAEC), as well as the polyanion cellulose sulfate (CS). The synthetic polymers poly(allylamine) (PAH) and poly(styrene sulfonate) (PSS) were employed as well for comparison. The stepwise adsorption process was monitored by whispering gallery mode (WGM) experiments and zeta-potential measurements. Distinct differences between synthetic- and polysaccharide-based assemblies were observed in terms of the quantitative adsorption of mass and adsorption kinetics. The LbL-approach was used to prepare µm-sized capsules with the aid of porous and non-porous silica particle templates. The polysaccharide-based capsule showed a switchable permeability that was not observed for the synthetic polymer materials. At ambient pH values of 7, low-molecular dyes could penetrate the capsule wall while no permeation occurred at elevated pH values of 8. Finally, the preparation of protein-loaded LbL-capsules was studied using the combination of CAEC and CS. It was shown that high amounts of protein (streptavidin and ovomucoid) can be encapsulated and that no leaking or disintegration of the cargo macromolecules occurred during the preparation step. Based on this work, potential use in biomedical areas can be concluded, such as the encapsulation of bioactive compounds (e.g., pharmaceutical compounds, antibodies) for drug delivery or sensing purposes. Full article
Show Figures

Graphical abstract

11 pages, 4148 KB  
Article
The Buffer Capacity of Polyelectrolyte Microcapsules Depends on the Type of Template
by Alexey V. Dubrovskii, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2024, 16(16), 2261; https://doi.org/10.3390/polym16162261 - 9 Aug 2024
Cited by 2 | Viewed by 2059
Abstract
One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, [...] Read more.
One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, as well as the stability and physical properties of their shell. However, the buffer capacity of PMCs and their behavior under changes in ionic strength and temperature can differ depending on the type of core used to form the microcapsules. As part of this study, we revealed the buffer capacity (BC) of polyelectrolyte microcapsules formed on polystyrene cores (PMCPs) and studied the influence of ionic strength and environmental temperature on the BC of these capsules. We found that the buffer capacity of PMCPs differs from the BC of water at a pH above 8; the addition of sodium chloride leads to an increase in buffer capacity in alkaline conditions, and conversely, thermal treatment leads to its decrease at a pH of 9. The results obtained are different from the BC of polyelectrolyte microcapsules formed on CaCO3 cores, which suggests a difference in the physicochemical properties of these types of capsules. The buffer capacity of polyelectrolyte microcapsules depends on the type of template used. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

12 pages, 3104 KB  
Article
Polyelectrolyte Microcapsules: An Extended Release System for the Antiarrhythmic Complex of Allapinin with Glycyrrhizic Acid Salt
by Shavkat I. Salikhov, Egor V. Musin, Aleksandr L. Kim, Yulia I. Oshchepkova and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2024, 25(5), 2652; https://doi.org/10.3390/ijms25052652 - 24 Feb 2024
Cited by 2 | Viewed by 1916
Abstract
Allapinin has antiarrhythmic activity and can be used to prevent and treat various supraventricular and ventricular arrhythmias. Nevertheless, it is highly toxic and has a number of side effects associated with non-specific accumulation in various tissues. The complex of this substance with the [...] Read more.
Allapinin has antiarrhythmic activity and can be used to prevent and treat various supraventricular and ventricular arrhythmias. Nevertheless, it is highly toxic and has a number of side effects associated with non-specific accumulation in various tissues. The complex of this substance with the monoammonium salt of glycyrrhizic acid (Al:MASGA) has less toxicity and improved antiarrhythmic activity. However, the encapsulation of Al:MASGA in polyelectrolyte microcapsules (PMC) for prolonged release will reduce the residual adverse effects of this drug. In this work, the possibility of encapsulating the allapinin–MASGA complex in polyelectrolyte microcapsules based on polyallylamine and polystyrene sulfonate was investigated. The encapsulation methods of the allapinin–MASGA in polyelectrolyte microcapsules by adsorption and coprecipitation were compared. It was found that the coprecipitation method did not result in the encapsulation of Al:MASGA. The sorption method facilitated the encapsulation of up to 80% of the original substance content in solution in PMC. The release of the encapsulated substance was further investigated, and it was shown that the release of the encapsulated Al:MASGA was independent of the substance content in the capsules, but at pH 5, a two-fold decrease in the rate of drug release was observed. Full article
Show Figures

Figure 1

13 pages, 2439 KB  
Article
Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications
by Danil D. Kolmanovich, Nikita N. Chukavin, Irina V. Savintseva, Elena A. Mysina, Nelli R. Popova, Alexander E. Baranchikov, Madina M. Sozarukova, Vladimir K. Ivanov and Anton L. Popov
Polymers 2023, 15(18), 3840; https://doi.org/10.3390/polym15183840 - 21 Sep 2023
Cited by 8 | Viewed by 2371
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging [...] Read more.
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2−x NPs). CeGdO2−x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2−x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Figure 1

18 pages, 5532 KB  
Article
Labeling and Tracking of Individual Human Mesenchymal Stromal Cells Using Photoconvertible Fluorescent Microcapsules
by Olga A. Sindeeva, Polina A. Demina, Zhanna V. Kozyreva, Albert R. Muslimov, Olga I. Gusliakova, Valeriia O. Laushkina, Ekaterina A. Mordovina, Daria Tsyupka, Olga S. Epifanovskaya, Anastasiia Yu. Sapach, Irina Yu. Goryacheva and Gleb B. Sukhorukov
Int. J. Mol. Sci. 2023, 24(17), 13665; https://doi.org/10.3390/ijms241713665 - 4 Sep 2023
Cited by 10 | Viewed by 2592
Abstract
The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited [...] Read more.
The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as “gold standard” to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 μm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling. Full article
Show Figures

Figure 1

12 pages, 3524 KB  
Article
Behaviour of FITC-Labeled Polyallylamine in Polyelectrolyte Microcapsules
by Alexey V. Dubrovskii, Alexey V. Berezhnov, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2023, 15(16), 3330; https://doi.org/10.3390/polym15163330 - 8 Aug 2023
Cited by 3 | Viewed by 2008
Abstract
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules [...] Read more.
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)6PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)6PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)3PAH, where the shell is absent. The study showed that polyallylamine layers labeled with FITC migrate to the periphery of the microcapsule regardless of the number of layers. This is due to an increase in osmotic pressure caused by the rapid flow of ions from the interior of the microcapsule into the surrounding solution. In addition, FITC-polyallylamine has a lower charge density and less interaction with polystyrene sulfonate in the structure of the microcapsule. Meanwhile, the hydrophilicity of FITC-polyallylamine does not change or decreases slightly. The results suggest that this effect promotes the migration of labeled polyallylamine to a more hydrophilic region of the microcapsule, towards its periphery. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes)
Show Figures

Figure 1

22 pages, 6733 KB  
Review
Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly
by Cléa Chesneau, Laura Larue and Sabrina Belbekhouche
Pharmaceutics 2023, 15(6), 1718; https://doi.org/10.3390/pharmaceutics15061718 - 13 Jun 2023
Cited by 5 | Viewed by 2319
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution [...] Read more.
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core–shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes. Full article
Show Figures

Figure 1

20 pages, 8863 KB  
Article
Long-Term Culture Performance of a Polyelectrolyte Complex Microcapsule Platform for Hyaline Cartilage Repair
by Ehinor P. Arhebamen, Maria T. Teodoro, Amelia B. Blonka and Howard W. T. Matthew
Bioengineering 2023, 10(4), 467; https://doi.org/10.3390/bioengineering10040467 - 12 Apr 2023
Cited by 3 | Viewed by 2746
Abstract
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of [...] Read more.
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of our polyelectrolyte complex microcapsule (PECM) platform technology as a technique for generating cartilage-like spherical modules. Bone marrow-derived mesenchymal stem cells (bMSCs) or primary articular chondrocytes were encapsulated within PECMs composed of methacrylated hyaluronan, collagen I, and chitosan. The formation of cartilage-like tissue in the PECMs over a 90-day culture was characterized. The results showed that chondrocytes exhibited superior growth and matrix deposition compared to either chondrogenically-induced bMSCs or a mixed PECM culture containing both chondrocytes and bMSCs. The chondrocyte-generated matrix filled the PECM and produced substantial increases in capsule compressive strength. The PECM system thus appears to support intracapsular cartilage tissue formation and the capsule approach promotes efficient culture and handling of these micro tissues. Since previous studies have proven the feasibility of fusing such capsules into large tissue constructs, the results suggest that encapsulating primary chondrocytes in PECM modules may be a viable route toward achieving a functional articular cartilage graft. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

19 pages, 3727 KB  
Article
Doxorubicin-Loaded Polyelectrolyte Multilayer Capsules Modified with Antitumor DR5-Specific TRAIL Variant for Targeted Drug Delivery to Tumor Cells
by Anastasia Gileva, Daria Trushina, Anne Yagolovich, Marine Gasparian, Leyli Kurbanova, Ivan Smirnov, Sergey Burov and Elena Markvicheva
Nanomaterials 2023, 13(5), 902; https://doi.org/10.3390/nano13050902 - 27 Feb 2023
Cited by 11 | Viewed by 3189
Abstract
Recently, biodegradable polyelectrolyte multilayer capsules (PMC) have been proposed for anticancer drug delivery. In many cases, microencapsulation allows to concentrate the substance locally and prolong its flow to the cells. To reduce systemic toxicity when delivering highly toxic drugs, such as doxorubicin (DOX), [...] Read more.
Recently, biodegradable polyelectrolyte multilayer capsules (PMC) have been proposed for anticancer drug delivery. In many cases, microencapsulation allows to concentrate the substance locally and prolong its flow to the cells. To reduce systemic toxicity when delivering highly toxic drugs, such as doxorubicin (DOX), the development of a combined delivery system is of paramount importance. Many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. However, despite having a high antitumor efficacy of the targeted tumor-specific DR5-B ligand, a DR5-specific TRAIL variant, its fast elimination from a body limits its potential use in a clinic. A combination of an antitumor effect of the DR5-B protein with DOX loaded in the capsules could allow to design a novel targeted drug delivery system. The aim of the study was to fabricate PMC loaded with a subtoxic concentration of DOX and functionalized with the DR5-B ligand and to evaluate a combined antitumor effect of this targeted drug delivery system in vitro. In this study, the effects of PMC surface modification with the DR5-B ligand on cell uptake both in 2D (monolayer culture) and 3D (tumor spheroids) were studied by confocal microscopy, flow cytometry and fluorimetry. Cytotoxicity of the capsules was evaluated using an MTT test. The capsules loaded with DOX and modified with DR5-B demonstrated synergistically enhanced cytotoxicity in both in vitro models. Thus, the use of the DR5-B-modified capsules loaded with DOX at a subtoxic concentration could provide both targeted drug delivery and a synergistic antitumor effect. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Figure 1

11 pages, 2801 KB  
Article
Sorption of Salts of Various Metals by Polyelectrolyte Microcapsules
by Aleksandr L. Kim, Alexey V. Dubrovskii, Egor V. Musin and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2023, 24(3), 2834; https://doi.org/10.3390/ijms24032834 - 1 Feb 2023
Cited by 4 | Viewed by 2485
Abstract
Anthropogenic activity negatively affects the environment by polluting it with the salts of various metals. One of the ways to reduce this influence is to use water purification methods for the salts of various metals. Water purification methods based on nanomaterials are promising. [...] Read more.
Anthropogenic activity negatively affects the environment by polluting it with the salts of various metals. One of the ways to reduce this influence is to use water purification methods for the salts of various metals. Water purification methods based on nanomaterials are promising. In this regard, we proposed to study polyelectrolyte microcapsules (PMC) as a promising sorption agent for the salts of various metals. It was found that the polystyrene sulfonate-polyallylamine (PSS-PAH) polyelectrolyte complex and polyelectrolyte microcapsules of different compositions are not able to adsorb salts CuSO4, Pb(NO)3, FeCl3, and CuCl2. At the same time, it was found that all types of capsules, except for (PSS/PAH)2/PSS, are capable of sorbing about 420 µg of K3[Fe(CN)6] and about 500 µg of K4[Fe(CN)6] from solution. The adsorption of polyelectrolyte microcapsules has an electrostatic nature which is confirmed by increases in the sorption capacity of PMC of K3[Fe(CN)6] and K4[Fe(CN)6] with decreases in the pH of the solution. Also, It was confirmed that the sorption process of PMC of K3[Fe(CN)6] and K4[Fe(CN)6] is concentration dependent and has the limitation of the number of binding sites. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

2 pages, 187 KB  
Abstract
Single Domain Magnetic Nanoparticles as Magneto-Mechanical Actuators for Remote Drug Release from Polyelectrolyte Microcapsules
by Ivan Burmistrov, Maxim Veselov, Alexander Mikheev, Tatiana Pallaeva, Tatiana Bukreeva, Natalia Klyachko and Daria Trushina
Med. Sci. Forum 2022, 14(1), 90; https://doi.org/10.3390/ECMC2022-13495 - 7 Nov 2022
Viewed by 1534
Abstract
The modification of capsule shells with synthesized magnetic iron oxide nanoparticles aims not only to control the localization of capsules, but also to tune their permeability. The application of a super low frequency non-heating magnetic field (100 Hz) for these purposes offers prospects [...] Read more.
The modification of capsule shells with synthesized magnetic iron oxide nanoparticles aims not only to control the localization of capsules, but also to tune their permeability. The application of a super low frequency non-heating magnetic field (100 Hz) for these purposes offers prospects for high penetration ability into tissues, high locality, and safety, which makes this method preferable for use with in vivo rather than magnetic hyperthermia. In this work, we develop a proof of concept for the remotely controlled release of an encapsulated drug from polyelectrolyte microcapsules under exposure to an alternating super low frequency magnetic field. The characteristics of the tailor-made nanoparticles for the polyelectrolyte shell modification were analyzed to confirm their perspectives as magneto-mechanical actuators due to their abilities with the Brownian relaxation. Polyelectrolyte microcapsules were obtained using the well-known method of sequential deposition of polyelectrolytes on the surface of vaterite particles. We studied the time dependence of the amount of released fluorescently labeled high-molecular weight substance on the frequency of the applied magnetic field (100 mT, 20–100 Hz) and demonstrated that the application of a magnetic field with a frequency of 50 Hz leads to the most pronounced selective increase in the permeability of the shells. Our findings provide a promising application of composite magnetic microcapsules with permeability triggered by a super low frequency magnetic field for the controlled release of drugs without dangerous heating or overheating of the biological tissues. This work was supported by the grant of the President of the Russian Federation (MK-1109.2021.1.3). Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
Back to TopTop