Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation
Abstract
1. Introduction
2. Theoretical Background and Computational Details
3. Results and Discussion
3.1. The Comparison Between Theoretical Predictions and Experimental Results
3.2. Mechanisms of Magnetic Relaxation
3.3. Crystal-Field Analysis and Theoretical Magneto-Structural Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Liddle, S.T.; van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef]
- Parmar, V.S.; Mills, D.P.; Winpenny, R.E.P. Mononuclear Dysprosium Alkoxide and Aryloxide Single-Molecule Magnets. Chem. Eur. J. 2021, 27, 7625–7645. [Google Scholar] [CrossRef] [PubMed]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar] [CrossRef]
- Chilton, N.F. Molecular Magnetism. Annu. Rev. Mater. Res. 2022, 52, 79–101. [Google Scholar] [CrossRef]
- Duan, Y.; Rosaleny, L.E.; Coutinho, J.T.; Giménez-Santamarina, S.; Scheie, A.; Baldoví, J.J.; Cardona-Serra, S.; Gaita-Ariño, A. Data-driven design of molecular nanomagnets. Nat. Commun. 2022, 13, 7626. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.A.; McClain, K.R.; Reta, D.; Kragskow, J.G.C.; Marchiori, D.A.; Lachman, E.; Choi, E.-S.; Analytis, J.G.; Britt, R.D.; Chilton, N.F.; et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorg. Chem. 2016, 55, 10043–10056. [Google Scholar] [CrossRef]
- Jiang, S.-D.; Wang, B.-W.; Su, G.; Wang, Z.-M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chem. Int. Ed. 2010, 49, 7448–7451. [Google Scholar] [CrossRef]
- Ungur, L.; Le Roy, J.J.; Korobkov, I.; Murugesu, M.; Chibotaru, L.F. Fine-tuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single-Ion Magnet. Angew. Chem. Int. Ed. 2014, 53, 4413–4417. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L.F.; Chen, X.-M.; Tong, M.-L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tong, M.-L. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chem. Eur. J. 2018, 24, 7574–7594. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Vanjak, J.C.; Wilkins, B.O.; Vieru, V.; Bhuvanesh, N.S.; Reibenspies, J.H.; Martin, C.D.; Chibotaru, L.F.; Nippe, M. A High-Performance Single-Molecule Magnet Utilizing Dianionic Aminoborolide Ligands. J. Am. Chem. Soc. 2022, 144, 17743–17747. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.H.; Whyatt, Y.L.; Chilton, N.F.; Long, J.R. Strong Axiality in a Dysprosium(III) Bis(borolide) Complex Leads to Magnetic Blocking at 65 K. J. Am. Chem. Soc. 2023, 145, 1572–1579. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-S.; Zhang, K.; Wang, J.; Hu, Z.; Song, Y.; Zhang, Z.; Pan, Z.-Q. Regulating the distortion degree of the square antiprism coordination geometry in Dy–Na single ion magnets. CrystEngComm 2021, 23, 3175–3184. [Google Scholar] [CrossRef]
- Wang, H.-S.; Zhang, K.; Wang, J.; Hu, Z.-B.; Zhang, Z.; Song, Y.; Zhang, Y.-Q. Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn–Dy Heterometallic Single Molecule Magnets. Inorg. Chem. 2021, 60, 9941–9955. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 2011, 13, 20086–20090. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Goodwin, C.A.P.; Mills, D.P.; Winpenny, R.E.P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. Chem. Commun. 2015, 51, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F. Design Criteria for High-Temperature Single-Molecule Magnets. Inorg. Chem. 2015, 54, 2097–2099. [Google Scholar] [CrossRef]
- Luzon, J.; Sessoli, R. Lanthanides in molecular magnetism: So fascinating, so challenging. Dalton Trans. 2012, 41, 13556–13567. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Thewissen, M.; Costes, J.-P.; Wernsdorfer, W.; Chibotaru, L.F. Interplay of Strongly Anisotropic Metal Ions in Magnetic Blocking of Complexes. Inorg. Chem. 2013, 52, 6328–6337. [Google Scholar] [CrossRef] [PubMed]
- Chibotaru, L.F. Theoretical Understanding of Anisotropy in Molecular Nanomagnets. In Molecular Nanomagnets and Related Phenomena; Gao, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 185–229. [Google Scholar]
- Ungur, L.; Chibotaru, L.F. Computational Modelling of the Magnetic Properties of Lanthanide Compounds. In Lanthanides and Actinides in Molecular Magnetism; Wiley: Hoboken, New Jersey, USA, 2015. [Google Scholar] [CrossRef]
- Gómez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem. Rev. 2015, 289–290, 379–392. [Google Scholar] [CrossRef]
- Baldoví, J.J.; Duan, Y.; Morales, R.; Gaita-Ariño, A.; Ruiz, E.; Coronado, E. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models. Chem. Eur. J. 2016, 22, 13532–13539. [Google Scholar] [CrossRef]
- Gupta, T.; Rajaraman, G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem. Commun. 2016, 52, 8972–9008. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L. 1—Introduction to the electronic structure, luminescence, and magnetism of lanthanides. In Lanthanide-Based Multifunctional Materials; Martín-Ramos, P., Ramos Silva, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–58. [Google Scholar]
- Kotrle, K.; Herchel, R. Are Inorganic Single-Molecule Magnets a Possibility? A Theoretical Insight into Dysprosium Double-Deckers with Inorganic Ring Systems. Inorg. Chem. 2019, 58, 14046–14057. [Google Scholar] [CrossRef]
- Castro-Alvarez, A.; Gil, Y.; Llanos, L.; Aravena, D. High performance single-molecule magnets, Orbach or Raman relaxation suppression? Inorg. Chem. Front. 2020, 7, 2478–2486. [Google Scholar] [CrossRef]
- Aravena, D.; Ruiz, E. Spin dynamics in single-molecule magnets and molecular qubits. Dalton Trans. 2020, 49, 9916–9928. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Wang, Y.-F.; Wang, Y.-X.; Tang, M.-J.; Yin, B. Ab initio prediction of key parameters and magneto-structural correlation of tetracoordinated lanthanide single-ion magnets. Phys. Chem. Chem. Phys. 2023, 25, 18387–18399. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.-F.; Yin, B. The coexistence of long τQTM and high Ueff as a concise criterion for a good single-molecule magnet: A theoretical case study of square antiprism dysprosium single-ion magnets. Phys. Chem. Chem. Phys. 2022, 24, 11729–11742. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.-F.; Yin, B. The interpretation and prediction of lanthanide single-ion magnets from ab initio electronic structure calculation: The capability and limit. Dalton Trans. 2022, 51, 14793–14816. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Li, C.-C. A method to predict both the relaxation time of quantum tunneling of magnetization and the effective barrier of magnetic reversal for a Kramers single-ion magnet. Phys. Chem. Chem. Phys. 2020, 22, 9923–9933. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Luo, L. The anisotropy of the internal magnetic field on the central ion is capable of imposing great impact on the quantum tunneling of magnetization of Kramers single-ion magnets. Phys. Chem. Chem. Phys. 2021, 23, 3093–3105. [Google Scholar] [CrossRef] [PubMed]
- Dergachev, V.D.; Nakritskaia, D.D.; Varganov, S.A. Strong Relativistic Effects in Lanthanide-Based Single-Molecule Magnets. J. Phys. Chem. Lett. 2022, 13, 6749–6754. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.-Q.; Li, X.-L.; Guo, M.; Lu, J.; Liu, S.; Layfield Richard, A.; Tang, J. Tuning Magnetic Relaxation in Square-Pyramidal Dysprosium Single-Molecule Magnets Using Apical Alkoxide Ligands. CCS Chem. 2021, 3, 388–398. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, K.; Qin, Y.; Wu, Q.; Hu, K.; Mei, L.; Chai, Z.; Liu, X.; Yu, J.; Shi, W. Role of molecular symmetry in the magnetic relaxation dynamics of five-coordinate Dy(iii) complexes. Dalton Trans. 2023, 52, 2703–2711. [Google Scholar] [CrossRef]
- Zhu, Z.; Ying, X.; Zhao, C.; Zhang, Y.-Q.; Tang, J. A new breakthrough in low-coordinate Dy(iii) single-molecule magnets. Inorg. Chem. Front. 2022, 9, 6061–6066. [Google Scholar] [CrossRef]
- Parmar, V.S.; Ortu, F.; Ma, X.; Chilton, N.F.; Clérac, R.; Mills, D.P.; Winpenny, R.E.P. Probing Relaxation Dynamics in Five-Coordinate Dysprosium Single-Molecule Magnets. Chem. Eur. J. 2020, 26, 7774–7778. [Google Scholar] [CrossRef]
- Ying, X.; Zhu, Z.; Zhao, C.; Zhang, Y.-Q.; Tang, J. Five-Coordinated Dysprosium Single-Molecule Magnet Functionalized by the SMe Group. Inorg. Chem. 2022, 61, 20547–20551. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, E.; Arauzo, A.; Luzón, J.; Bartolomé, J.; Bartolomé, F. Chapter 1—Magnetic Relaxation of Lanthanide-Based Molecular Magnets. In Handbook of Magnetic Materials; Brück, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 26, pp. 1–289. [Google Scholar]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Garanin, D.A.; Chudnovsky, E.M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Physical Review B 1997, 56, 11102–11118. [Google Scholar] [CrossRef]
- Lunghi, A.; Sanvito, S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat. Rev. Chem. 2022, 6, 761–781. [Google Scholar] [CrossRef] [PubMed]
- Reta, D.; Kragskow, J.G.C.; Chilton, N.F. Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. J. Am. Chem. Soc. 2021, 143, 5943–5950. [Google Scholar] [CrossRef] [PubMed]
- Briganti, M.; Santanni, F.; Tesi, L.; Totti, F.; Sessoli, R.; Lunghi, A. A Complete Ab Initio View of Orbach and Raman Spin–Lattice Relaxation in a Dysprosium Coordination Compound. J. Am. Chem. Soc. 2021, 143, 13633–13645. [Google Scholar] [CrossRef] [PubMed]
- Roos, B.O.; Taylor, P.R.; Sigbahn, P.E.M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980, 48, 157–173. [Google Scholar] [CrossRef]
- Aquilante, F.; Autschbach, J.; Carlson, R.K.; Chibotaru, L.F.; Delcey, M.G.; De Vico, L.; Fdez Galván, I.; Ferré, N.; Frutos, L.M.; Gagliardi, L.; et al. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541. [Google Scholar] [CrossRef]
- Malmqvist, P.Å.; Roos, B.O.; Schimmelpfennig, B. The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Lett. 2002, 357, 230–240. [Google Scholar] [CrossRef]
- Heß, B.A.; Marian, C.M.; Wahlgren, U.; Gropen, O. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 1996, 251, 365–371. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O.; Borin, A.C. New Relativistic Atomic Natural Orbital Basis Sets for Lanthanide Atoms with Applications to the Ce Diatom and LuF3. J. Phys. Chem. A 2008, 112, 11431–11435. [Google Scholar] [CrossRef]
- Chibotaru, L.F.; Ungur, L. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys. 2012, 137, 064112. [Google Scholar] [CrossRef]
- Chibotaru, L.F. Ab Initio Methodology for Pseudospin Hamiltonians of Anisotropic Magnetic Complexes. Adv. Chem. Phys. 2013, 153, 397–519. [Google Scholar]
- Wang, Y.-F.; Wang, Y.-X.; Yang, Q.-Q.; Yin, B. Auxiliary Rather Than Dominant. The Role of Direct Dy–S Coordination in Single-Molecule Magnet Unveiled via ab initio Study. J. Phys. Chem. A 2024, 128, 5285–5297. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Ab Initio Crystal Field for Lanthanides. Chem. Eur. J. 2017, 23, 3708–3718. [Google Scholar] [CrossRef] [PubMed]
- Briganti, M.; Garcia, G.F.; Jung, J.; Sessoli, R.; Le Guennic, B.; Totti, F. Covalency and magnetic anisotropy in lanthanide single molecule magnets: The DyDOTA archetype. Chem. Sci. 2019, 10, 7233–7245. [Google Scholar] [CrossRef] [PubMed]
- Manvell, A.S.; Pfleger, R.; Bonde, N.A.; Briganti, M.; Mattei, C.A.; Nannestad, T.B.; Weihe, H.; Powell, A.K.; Ollivier, J.; Bendix, J.; et al. LnDOTA puppeteering: Removing the water molecule and imposing tetragonal symmetry. Chem. Sci. 2024, 15, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, F.; Le Guennic, B.; Cador, O. Pressure-Induced Structural, Optical and Magnetic Modifications in Lanthanide Single-Molecule Magnets. Chem. Eur. J. 2024, 30, e202400610. [Google Scholar] [CrossRef] [PubMed]
Refcode | / | TAC a | ||||
---|---|---|---|---|---|---|
1Dy | LEVLEH | 1.43 | 2.49 | 1780 | 1776/1856 | 95 |
2Dy | XUWDAX | 1.26 × 10−1 | 2.62 × 10−1 | 1201 | 1350/1282 | 64 |
3Dy | XUWCUQ | 3.98 × 10−2 | 1.35 × 10−1 | 1210 | 1315/1239 | 64 |
4Dy | XUWCOK | 1.00 × 10−1 | 5.42 × 10−2 | 1262 | 1249/1173 | 64 |
5Dy | ENACOO | N/A b | 7.41 × 10−1 | 1176 | 1236/999 | 60 |
6Dy | ENACII | N/A | 1.51 | 905 | 1035/964 | 49 |
7Dy | ENACUU | 2.02 × 10−2 | 8.77 × 10−1 | 872 | 1014/951 | 41 |
8Dy | ENABON | 3.02 × 10−2 | 2.77 | 773 | 981/801 | 50 |
9Dy | ZESGAJ | 3.68 × 10−1 | 2.56 × 10−1 | 622 | 859/731 | 45 |
10Dy | E.NACAA | 7.45 × 10−3 | 2.51 × 10−1 | 601 | 745/684 | 40 |
11Dy | ENACEE | 3.35 × 10−3 | 5.75 × 10−3 | 378 | 633/374 | 33 |
12Dy | ENABIH | 6.11 × 10−4 | 1.25 × 10−3 | 160 | 738/422 | 22 |
13Dy | DEYRIO | N/A | 2.12 × 10−6 | 36 | 328/230 | 6 |
14Dy | FEYREK | N/A | 1.53 × 10−6 | 19 | 250/124 | 5 |
15Dy | DEYRIO | N/A | 8.00 × 10−7 | N/A | 245/0 | 6 |
16Dy | FEYRAG | 4.03 × 10−4 | 1.19 × 10−8 | N/A | 160/0 | 6 |
Saturated Case | Reproducing Case | Trep | |
---|---|---|---|
1Dy | KD5 + KD6 (91%) | KD5 + KD6 (68%), KD4 (16%) | 100 a |
2Dy | KD3 + KD4 (97%) | KD4 + KD3 (82%) | 79 |
3Dy | KD3 + KD4 (95%) | KD3 + KD4 (77%), KD2 (21%) | 86 |
4Dy | KD3 + KD4 (96%) | KD3 + KD4 (86%) | 90 a |
5Dy | KD4 + KD5 + KD6 (79%) | KD4 + KD5 + KD6 (75%), KD3 (15%) | 160 |
6Dy | KD3 (38%) + KD5 (36%) + KD4 (18%) | KD3 (47%) + KD0 (28%) + KD2 (11%) | 49 |
7Dy | KD4 (53%) + KD5 (28%) + KD6 (16%) | KD4 (62%) + KD1 (9%) + KD5 (8%) | 56 |
8Dy | KD3 (42%) + KD5 (38%) + KD4 (12%) | KD3 (52%) + KD2 (19%) + KD0 (13%) | 48 |
9Dy | KD5 (40%) + KD3 (38%) + KD2 (15%) | KD2 (48%) + KD3 (25%) + KD0 (18%) | 44 |
10Dy | KD2 (46%) + KD3 (35%) + KD4 (18%) | KD2 (71%) + KD0 (15%) + KD3 (12%) | 38 |
11Dy | KD3 (53%) + KD2 (43%) | KD2 (54%) + KD0 (25%) + KD3 (12%) | 40 |
12Dy | KD3 (52%) + KD2 (16%) + KD7 (12%) | KD0 (74%) + KD3 (13%) | 42 |
13Dy | KD2 (48%) + KD1 (39%) + KD3 (10%) | KD0 (83%) + KD1 (16%) | 31 |
14Dy | KD3 (66%) + KD4 (14%) | KD0 (86%) + KD1 (13%) | 23 |
15Dy | KD1 (70%) + KD2 (21%) | N/A b | N/A |
16Dy | KD1 (44%) + KD2 (30%) + KD0 (16%) | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-X.; Wang, Y.-F.; Yin, B. Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry 2025, 11, 3. https://doi.org/10.3390/magnetochemistry11010003
Wang Y-X, Wang Y-F, Yin B. Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry. 2025; 11(1):3. https://doi.org/10.3390/magnetochemistry11010003
Chicago/Turabian StyleWang, Yu-Xi, Yu-Fei Wang, and Bing Yin. 2025. "Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation" Magnetochemistry 11, no. 1: 3. https://doi.org/10.3390/magnetochemistry11010003
APA StyleWang, Y.-X., Wang, Y.-F., & Yin, B. (2025). Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry, 11(1), 3. https://doi.org/10.3390/magnetochemistry11010003