The Creation of Remote Spin Entanglement with a Nanomechanical Cantilever
Abstract
1. Introduction
2. Results
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Anderson, C.P.; Awschalom, D.D. Embracing imperfection for quantum technologies. Phys. Today 2023, 76, 26–33. [Google Scholar] [CrossRef]
- Berman, G.P.; Gorshkov, V.N.; Tsifrinovich, V.I. Electron spin relaxation induced by a cantilever when the spin frequency matches the cantilever frequency. J. Appl. Phys. 2021, 130, 144402. [Google Scholar] [CrossRef]
- Berman, G.P.; Tsifrinovich, V.I. Magnetic resonance force microscopy with matching frequencies of cantilever and spin. J. Appl. Phys. 2022, 131, 044301. [Google Scholar] [CrossRef]
- Christou, P.; Tsifrinovich, V.I. A Qubit represented by the oscillator’s quantum states in magnetic resonance force microscopy. Magnetochemistry 2022, 8, 76–80. [Google Scholar] [CrossRef]
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef]
- Stenholm, S. Quantum theory of electromagnetic fields interacting with atoms and molecules. Phys. Rep. (Sect. C Phys. Lett.) 1973, 6, 1–121. [Google Scholar] [CrossRef]
- Beukers, H.K.C.; Pasini, M.; Choi, H.; Englund, D.; Hanson, R.; Borregaard, J. Remote-Entanglement Protocols for Stationary Qubits with Photonic Interfaces. PRX Quantum 2024, 5, 010202. [Google Scholar] [CrossRef]
- Delteil, A.; Sun, Z.; Gao, W.-B.; Togan, E.; Faelt, S.; Imamoğlu, A. Generation of heralded entanglement between distant hole spins. Nat. Phys. 2016, 12, 218–223. [Google Scholar] [CrossRef]
- Bernien, H.; Hensen, B.; Pfaff, W.; Koolstra, G.; Blok, M.S.; Robledo, L.; Taminiau, T.H.; Markham, M.; Twitchen, D.J.; Childress, L.; et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 2013, 497, 86–90. [Google Scholar] [CrossRef]
- Jadot, B.; Mortemousque, P.-A.; Chanrion, E.; Thiney, V.; Ludwig, A.; Wieck, A.D.; Urdampilleta, M.; Bäuerle, C.; Meunier, T. Distant spin entanglement via fast and coherent electron shuttling. arXiv 2004, 02727, 1–11. [Google Scholar] [CrossRef]
- Hermans, S.L.N.; Pompili, M.; Martins, L.D.S.; Montblanch, A.R.-P.; Beukers, H.K.C.; Baier, S.; Borregaard, J.; Hanson, R. Entangling remote qubits using the single-photon protocol: An in-depth theoretical and experimental study. arXiv 2022, 25, 1–19. [Google Scholar] [CrossRef]
- Trifunovic, L.; Pedrocchi, F.L.; Loss, D. Long-Distance Entanglement of Spin Qubits via Ferromagnet. Phys. Rev. X 2013, 3, 041023. [Google Scholar] [CrossRef]
- Bazhanov, D.I.; Sivkov, I.N.; Stepanyuk, V.S. Engineering of entanglement and spin state transfer via quantum chains of atomic spins at large separations. Sci. Rep. 2018, 8, 14118. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.; Wächtler, C.W.; Nemoto, K.; Munro, W.J. Entanglement generation between distant spins via quasilocal reservoir engineering. Phys. Rev. Res. 2023, 5, 043295. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsifrinovich, V.I. The Creation of Remote Spin Entanglement with a Nanomechanical Cantilever. Magnetochemistry 2024, 10, 71. https://doi.org/10.3390/magnetochemistry10100071
Tsifrinovich VI. The Creation of Remote Spin Entanglement with a Nanomechanical Cantilever. Magnetochemistry. 2024; 10(10):71. https://doi.org/10.3390/magnetochemistry10100071
Chicago/Turabian StyleTsifrinovich, Vladimir I. 2024. "The Creation of Remote Spin Entanglement with a Nanomechanical Cantilever" Magnetochemistry 10, no. 10: 71. https://doi.org/10.3390/magnetochemistry10100071
APA StyleTsifrinovich, V. I. (2024). The Creation of Remote Spin Entanglement with a Nanomechanical Cantilever. Magnetochemistry, 10(10), 71. https://doi.org/10.3390/magnetochemistry10100071