Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning
Abstract
:1. Introduction
2. Theory
2.1. NMR Theory
2.2. Image Acquisition
2.3. Network Structure
2.4. Algorithm Process
3. Experimental Results and Analysis
3.1. Curve
3.1.1. P_Curve
3.1.2. R_Curve
3.1.3. F1_Curve
3.2. Training Result Indicators
3.3. Confusion Matrix
3.4. Test Result Indicators
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, B. Shale Energy Revolution; Springer Publishing: Singapore, 2020. [Google Scholar]
- Evans, M.J. Unconventional Hydrocarbons and the US Technology Revolution. In Risks, Rewards and Regulation of Unconventional Gas: A Global Perspective; Grafton, R.Q., Cronshaw, I.G., Moore, M.C., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 59–91. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Shale gas formation mechanism, geological characteristics and resource potential in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Yang, J.; Hatcherian, J.; Hackley, P.C.; Pomerantz, A.E. Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 2017, 8, 2179. [Google Scholar] [CrossRef] [PubMed]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Ji, W.; Zhang, C.; Yuan, Y.; Chen, L.; Yin, L. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Pet. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, G.; Xue, H.; Guo, W.; Li, X. 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Mar. Pet. Geol. 2016, 73, 174–180. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, X.; Xie, Q. Study on Shale Gas Petrophysics and Well Logging Evaluation and Microscopic Seepage Characteristics; Science Press: Beijing, China, 2015. [Google Scholar]
- Shi, M.; Yu, B.; Xue, Z.; Wu, J.; Yuan, Y. Pore characteristics of organic-rich shales with high thermal maturity: A case study of the Longmaxi gas shale reservoirs from well Yuye-1 in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 2015, 26, 948–959. [Google Scholar] [CrossRef]
- Zargari, S.; Canter, K.L.; Prasad, M. Porosity evolution in oil-prone source rocks. Fuel 2015, 153, 110–117. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Technol. 2012, 88, 92–99. [Google Scholar]
- Coates, G.; Xiao, L.; Prammer, M. NMR Logging Principles and Applications; Gulf Professional Publishing: Oxford, UK, 1999. [Google Scholar]
- Elsayed, M.; Isah, A.; Hiba, M.; Hassan, A.; Al-Garadi, K.; Mahmoud, M.; El-Husseiny, A.; Radwan, A.E. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: Laboratory and field-scale measurements. J. Pet. Explor. Prod. Technol. 2022, 12, 2747–2784. [Google Scholar] [CrossRef]
- Singer, P.M.; Chen, Z.; Hirasaki, G.J. Fluid Typing and Pore Size in Organic Shale Using 2D NMR in Saturated Kerogen Isolates. Petrophysics 2016, 57, 604–619. [Google Scholar]
- Liang, C.; Jia, Z.; Xiao, L.; Guo, A. Application limits and influencing factors in characterization of rock cores using phase-encoded T2-y method in low-field NMR. Energy Fuels 2024, 38, 12612–12624. [Google Scholar] [CrossRef]
- Kausik, R.; Fellah, K.; Rylander, E.; Singer, P.M.; Lewis, R.E.; Sinclair, S.M. NMR relaxometry in shale and implications for logging. Petrophysics 2016, 57, 339–350. [Google Scholar]
- Cao Minh, C.; Crary, S.; Zielinski, L.; Liu, C.B.; Jones, S.; Jacobsen, S. 2D-NMR Applications in Unconventional Reservoirs. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–November 1 2012. SPE-161578-MS. [Google Scholar]
- Tinni, A.; Odusina, E.; Sulucarnain, I.; Sondergeld, C.; Rai, C.S. Nuclear-Magnetic-Resonance Response of Brine, Oil, and Methane in Organic-Rich Shales. SPE Reserv. Eval. Eng. 2015, 18, 400–406. [Google Scholar] [CrossRef]
- Sigal, R.F. Pore-Size Distributions for Organic-Shale-Reservoir Rocks From Nuclear-Magnetic-Resonance Spectra Combined With Adsorption Measurements. SPE J. 2015, 20, 824–830. [Google Scholar] [CrossRef]
- Song, Y.-Q. Focus on the physics of magnetic resonance on porous media. New J. Phys. 2012, 14, 55017. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, J.; Jin, G.; Quinn, T.; Frost, E.; Chen, J. Capillary condensation and NMR relaxation times in unconventional shale hydrocarbon resources. In Proceedings of the SPWLA Annual Proc SWPLA-2012-186, SPWLA 53rd Annual Symposium, Cartagena, Colombia, 16–20 June 2012. [Google Scholar]
- Kausik, R.; Kleinberg, R.L.; Rylander, E.; Sibbit, A.; Westacott, A. A novel determination of total gas-in-place (TGIP) for gas shale from magnetic resonance logs. Petrophysics 2017, 58, 232–241. [Google Scholar]
- Habina, I.; Radzik, N.; Topór, T.; Krzyżak, A.T. Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation. Microporous Mesoporous Mater. 2017, 252, 37–49. [Google Scholar] [CrossRef]
- Washburn, K.E. Relaxation mechanisms and shales. Concepts Magn. Reson. Part A 2014, 43, 57–78. [Google Scholar] [CrossRef]
- Rylander, E.; Singer, P.M.; Jiang, T.; Lewis, R.; McLin, R.; Sinclair, S.M. NMR T2 distributions in the Eagle Ford shale: Reflections on pore size. In Proceedings of the SPE 164554, SPE Unconventional Resources Conference, Woodlands, TX, USA, 10–12 April 2013. [Google Scholar]
- Cao, X.; Birdwell, J.E.; Chappell, M.A.; Li, Y.; Pignatello, J.J.; Mao, J. Characterization of oil shale, isolated kerogen, and postpyrolysis residues using advanced 13C solid-state nuclear magnetic resonance. AAPG Bull 2013, 97, 421–436. [Google Scholar] [CrossRef]
- Kausik, R.; Fellah, K.; Feng, L.; Freed, D.; Simpson, G. High- and low-field NMR relaxometry and diffusometry of the Bakken Petroleum System. Petrophysics 2017, 58, 341–351. [Google Scholar]
- Korb, J.-P.; Nicot, B.; Jolivet, I. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1–T2 and fast field cycling NMR relaxation. Microporous Mesoporous Mater. 2018, 269, 7–11. [Google Scholar] [CrossRef]
- Washburn, K.E.; Birdwell, J.E.; Seymour, J.D.; Kirkland, C.; Vogt, S.J. Low-Field Nuclear Magnetic Resonance Characterisation of Organic Content in Shales; Society of Core Analysts Symposium: Napa Valley, CA, USA, 2013. [Google Scholar]
- Daigle, H.; Johnson, A.; Gips, J.P.; Sharma, M. Porosity Evaluation of Shales Using NMR Secular Relaxation. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014. [Google Scholar]
- Peng, W.K.; Chen, L.; Boehm, B.O.; Han, J.; Loh, T.P. Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging Mech. Dis. 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Washburn, K.E.; Birdwell, J.E. Updated methodology for nuclear magnetic resonance characterization of shales. J. Magn. Reason. 2013, 223, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Xiao, L.; Wang, Z.; Liao, G.; Zhang, Y.; Liang, C. Magic echo for nuclear magnetic resonance characterization of shales. Energy Fuels 2017, 31, 7824–7830. [Google Scholar] [CrossRef]
- Jia, Z.; Xiao, L.; Chen, Z.; Wang, Z.; Liao, G.; Zhang, Y.; Liang, C.; Guo, L. Determining shale organic porosity and total organic carbon by combining spin echo, solid echo and magic echo. Microporous Mesoporous Mater. 2018, 269, 12–16. [Google Scholar] [CrossRef]
- Song, Y.Q.; Kausik, R. NMR application in unconventional shale reservoirs—A new porous media research frontier. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 112–113, 17–33. [Google Scholar] [CrossRef]
- Fleury, M.; Romero-Sarmiento, M. Characterization of shales using T1–T2 NMR maps. J. Pet. Sci. Eng. 2016, 137, 55–62. [Google Scholar] [CrossRef]
- Kausik, R.; Freed, D.; Fellah, K.; Feng, L.; Ling, Y.; Simpson, G. Frequency and temperature dependence of 2D NMR T1–T2 maps of shale. Petrophysics 2019, 60, 37–49. [Google Scholar] [CrossRef]
- Tan, M.; Mao, K.; Song, X.; Yang, X.; Xu, J. NMR petrophysical interpretation method of gas shale based on core NMR experiment. J. Pet. Sci. Eng. 2015, 136, 100–111. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Lu, J.; Jin, W. Determining the content of free methane gas and adsorbed methane gas in shale using nuclear magnetic resonance technology. Logging Technol. 2018, 42, 71–76. [Google Scholar]
- Xiao, W.; Zhang, J.; Du, Y.; Zhao, J.; Zhao, Z. Experimental study on NMR response characteristics of shale imbibition under pressure. J. Southwest Pet. Univ. (Nat. Sci. Ed.) 2019, 41, 13–18. [Google Scholar]
- Liu, Z.; Yang, D.; Shao, J.; Hu, Y. Study on the pore connectivity evolution of Fushun oil shale based on low-field nuclear magnetic resonance. J. Spectrosc. 2019, 36., 309–318. [Google Scholar]
- Ma, X.; Wang, H.; Zhou, S.; Feng, Z.; Guo, W. Insights into nmr response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas Sci. Eng. 2020, 84, 103674. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, X.; Bai, L.; Lu, R. Investigation of Oil and Water Migrations in Lacustrine Oil Shales Using 20 MHz 2D NMR Relaxometry Techniques. Pet. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, Z.; Hu, Z.; Chang, J.; Zhan, H. Characterization and interpretation of organic matter, clay minerals, and gas shale rocks with low-field nmr. J. Pet. Sci. Eng. 2020, 195, 107926. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Meng, J. Well logging curve generation method based on recurrent neural network. Pet. Explor. Dev. 2018, 45, 598–607. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Current status and prospects of artificial intelligence processing and interpretation of logging data. Logging Technol. 2021, 45, 345–356. [Google Scholar]
- Kang, D.; Wang, X.; Zheng, X.; Zhao, Y.-P. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra. Fuel 2021, 290, 120006. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Kadkhodaie, A. Application of ensemble machine learning methods for kerogen type estimation from petrophysical well logs. J. Pet. Sci. Eng. 2022, 208 Pt B, 109455. [Google Scholar] [CrossRef]
- Meng, M.; Zhong, R.; Wei, Z. Prediction of methane adsorption in shale: Classical models and machine learning based models. Fuel 2020, 278, 118358. [Google Scholar] [CrossRef]
- Wu, Y.; Misra, S.; Sondergeld, C.; Curtis, M.; Jernigen, J. Machine learning for locating organic matter and pores in scanning electron microscopy images of organic-rich shales. Fuel 2019, 253, 662–676. [Google Scholar] [CrossRef]
- Tamoto, H.; dos Santos Gioria, R.; de Carvalho Carneiro, C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. J. Pet. Sci. Eng. 2023, 220, 111169. [Google Scholar] [CrossRef]
- Zhuoke, L.; Lin, T.; Liu, X.; Ma, S.; Li, X.; Yang, F.; He, B.; Liu, J.; Zhang, Y.; Xie, L. High-temperature-induced pore system evolution of immature shale with different total organic carbon contents. ACS Omega 2023, 8, 12773–12786. [Google Scholar] [CrossRef] [PubMed]
- Bloembergen, N. Nuclear Magnetic Relaxation; Benjamin: New York, NY, USA, 1961. [Google Scholar]
Number of Trainings | Confidence | Precision |
---|---|---|
1 | 0.936 | 1 |
5 | 0.939 | 1 |
8 | 0.962 | 1 |
10 | 0.943 | 1 |
15 | 0.950 | 1 |
Number of Trainings | Confidence | Recall |
---|---|---|
1 | 0 | 0.33 |
5 | 0 | 0.90 |
8 | 0 | 0.86 |
10 | 0 | 0.92 |
15 | 0 | 0.90 |
Number of Trainings | Confidence | F1_Score |
---|---|---|
1 | 0.786 | 0.33 |
5 | 0.841 | 0.90 |
8 | 0.843 | 0.85 |
10 | 0.816 | 0.92 |
15 | 0.820 | 0.89 |
TN | Box | O | C | P | R | VB | VO | VC | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.029 | 0.029 | 0.005 | 0.33 | 0.33 | 0.02 | 0.01 | 0.0020 | 0.18 | 0.06 |
5 | 0.017 | 0.022 | 0.002 | 0.90 | 0.90 | 0.01 | 0.01 | 0.0008 | 0.86 | 0.37 |
8 | 0.017 | 0.022 | 0.002 | 0.85 | 0.86 | 0.01 | 0.01 | 0.0008 | 0.81 | 0.33 |
10 | 0.017 | 0.021 | 0.002 | 0.91 | 0.92 | 0.01 | 0.01 | 0.0008 | 0.90 | 0.34 |
15 | 0.017 | 0.021 | 0.002 | 0.89 | 0.90 | 0.01 | 0.01 | 0.0008 | 0.86 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Liang, C.; Zeng, C.; Chen, R. Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry 2024, 10, 70. https://doi.org/10.3390/magnetochemistry10100070
Jia Z, Liang C, Zeng C, Chen R. Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry. 2024; 10(10):70. https://doi.org/10.3390/magnetochemistry10100070
Chicago/Turabian StyleJia, Zijian, Can Liang, Chunlin Zeng, and Rui Chen. 2024. "Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning" Magnetochemistry 10, no. 10: 70. https://doi.org/10.3390/magnetochemistry10100070
APA StyleJia, Z., Liang, C., Zeng, C., & Chen, R. (2024). Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry, 10(10), 70. https://doi.org/10.3390/magnetochemistry10100070