Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning
Abstract
1. Introduction
2. Theory
2.1. NMR Theory
2.2. Image Acquisition
2.3. Network Structure
2.4. Algorithm Process
3. Experimental Results and Analysis
3.1. Curve
3.1.1. P_Curve
3.1.2. R_Curve
3.1.3. F1_Curve
3.2. Training Result Indicators
3.3. Confusion Matrix
3.4. Test Result Indicators
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, B. Shale Energy Revolution; Springer Publishing: Singapore, 2020. [Google Scholar]
- Evans, M.J. Unconventional Hydrocarbons and the US Technology Revolution. In Risks, Rewards and Regulation of Unconventional Gas: A Global Perspective; Grafton, R.Q., Cronshaw, I.G., Moore, M.C., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 59–91. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Shale gas formation mechanism, geological characteristics and resource potential in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Yang, J.; Hatcherian, J.; Hackley, P.C.; Pomerantz, A.E. Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 2017, 8, 2179. [Google Scholar] [CrossRef] [PubMed]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Ji, W.; Zhang, C.; Yuan, Y.; Chen, L.; Yin, L. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Pet. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, G.; Xue, H.; Guo, W.; Li, X. 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Mar. Pet. Geol. 2016, 73, 174–180. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, X.; Xie, Q. Study on Shale Gas Petrophysics and Well Logging Evaluation and Microscopic Seepage Characteristics; Science Press: Beijing, China, 2015. [Google Scholar]
- Shi, M.; Yu, B.; Xue, Z.; Wu, J.; Yuan, Y. Pore characteristics of organic-rich shales with high thermal maturity: A case study of the Longmaxi gas shale reservoirs from well Yuye-1 in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 2015, 26, 948–959. [Google Scholar] [CrossRef]
- Zargari, S.; Canter, K.L.; Prasad, M. Porosity evolution in oil-prone source rocks. Fuel 2015, 153, 110–117. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Technol. 2012, 88, 92–99. [Google Scholar]
- Coates, G.; Xiao, L.; Prammer, M. NMR Logging Principles and Applications; Gulf Professional Publishing: Oxford, UK, 1999. [Google Scholar]
- Elsayed, M.; Isah, A.; Hiba, M.; Hassan, A.; Al-Garadi, K.; Mahmoud, M.; El-Husseiny, A.; Radwan, A.E. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: Laboratory and field-scale measurements. J. Pet. Explor. Prod. Technol. 2022, 12, 2747–2784. [Google Scholar] [CrossRef]
- Singer, P.M.; Chen, Z.; Hirasaki, G.J. Fluid Typing and Pore Size in Organic Shale Using 2D NMR in Saturated Kerogen Isolates. Petrophysics 2016, 57, 604–619. [Google Scholar]
- Liang, C.; Jia, Z.; Xiao, L.; Guo, A. Application limits and influencing factors in characterization of rock cores using phase-encoded T2-y method in low-field NMR. Energy Fuels 2024, 38, 12612–12624. [Google Scholar] [CrossRef]
- Kausik, R.; Fellah, K.; Rylander, E.; Singer, P.M.; Lewis, R.E.; Sinclair, S.M. NMR relaxometry in shale and implications for logging. Petrophysics 2016, 57, 339–350. [Google Scholar]
- Cao Minh, C.; Crary, S.; Zielinski, L.; Liu, C.B.; Jones, S.; Jacobsen, S. 2D-NMR Applications in Unconventional Reservoirs. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–November 1 2012. SPE-161578-MS. [Google Scholar]
- Tinni, A.; Odusina, E.; Sulucarnain, I.; Sondergeld, C.; Rai, C.S. Nuclear-Magnetic-Resonance Response of Brine, Oil, and Methane in Organic-Rich Shales. SPE Reserv. Eval. Eng. 2015, 18, 400–406. [Google Scholar] [CrossRef]
- Sigal, R.F. Pore-Size Distributions for Organic-Shale-Reservoir Rocks From Nuclear-Magnetic-Resonance Spectra Combined With Adsorption Measurements. SPE J. 2015, 20, 824–830. [Google Scholar] [CrossRef]
- Song, Y.-Q. Focus on the physics of magnetic resonance on porous media. New J. Phys. 2012, 14, 55017. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, J.; Jin, G.; Quinn, T.; Frost, E.; Chen, J. Capillary condensation and NMR relaxation times in unconventional shale hydrocarbon resources. In Proceedings of the SPWLA Annual Proc SWPLA-2012-186, SPWLA 53rd Annual Symposium, Cartagena, Colombia, 16–20 June 2012. [Google Scholar]
- Kausik, R.; Kleinberg, R.L.; Rylander, E.; Sibbit, A.; Westacott, A. A novel determination of total gas-in-place (TGIP) for gas shale from magnetic resonance logs. Petrophysics 2017, 58, 232–241. [Google Scholar]
- Habina, I.; Radzik, N.; Topór, T.; Krzyżak, A.T. Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation. Microporous Mesoporous Mater. 2017, 252, 37–49. [Google Scholar] [CrossRef]
- Washburn, K.E. Relaxation mechanisms and shales. Concepts Magn. Reson. Part A 2014, 43, 57–78. [Google Scholar] [CrossRef]
- Rylander, E.; Singer, P.M.; Jiang, T.; Lewis, R.; McLin, R.; Sinclair, S.M. NMR T2 distributions in the Eagle Ford shale: Reflections on pore size. In Proceedings of the SPE 164554, SPE Unconventional Resources Conference, Woodlands, TX, USA, 10–12 April 2013. [Google Scholar]
- Cao, X.; Birdwell, J.E.; Chappell, M.A.; Li, Y.; Pignatello, J.J.; Mao, J. Characterization of oil shale, isolated kerogen, and postpyrolysis residues using advanced 13C solid-state nuclear magnetic resonance. AAPG Bull 2013, 97, 421–436. [Google Scholar] [CrossRef]
- Kausik, R.; Fellah, K.; Feng, L.; Freed, D.; Simpson, G. High- and low-field NMR relaxometry and diffusometry of the Bakken Petroleum System. Petrophysics 2017, 58, 341–351. [Google Scholar]
- Korb, J.-P.; Nicot, B.; Jolivet, I. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1–T2 and fast field cycling NMR relaxation. Microporous Mesoporous Mater. 2018, 269, 7–11. [Google Scholar] [CrossRef]
- Washburn, K.E.; Birdwell, J.E.; Seymour, J.D.; Kirkland, C.; Vogt, S.J. Low-Field Nuclear Magnetic Resonance Characterisation of Organic Content in Shales; Society of Core Analysts Symposium: Napa Valley, CA, USA, 2013. [Google Scholar]
- Daigle, H.; Johnson, A.; Gips, J.P.; Sharma, M. Porosity Evaluation of Shales Using NMR Secular Relaxation. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014. [Google Scholar]
- Peng, W.K.; Chen, L.; Boehm, B.O.; Han, J.; Loh, T.P. Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging Mech. Dis. 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Washburn, K.E.; Birdwell, J.E. Updated methodology for nuclear magnetic resonance characterization of shales. J. Magn. Reason. 2013, 223, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Xiao, L.; Wang, Z.; Liao, G.; Zhang, Y.; Liang, C. Magic echo for nuclear magnetic resonance characterization of shales. Energy Fuels 2017, 31, 7824–7830. [Google Scholar] [CrossRef]
- Jia, Z.; Xiao, L.; Chen, Z.; Wang, Z.; Liao, G.; Zhang, Y.; Liang, C.; Guo, L. Determining shale organic porosity and total organic carbon by combining spin echo, solid echo and magic echo. Microporous Mesoporous Mater. 2018, 269, 12–16. [Google Scholar] [CrossRef]
- Song, Y.Q.; Kausik, R. NMR application in unconventional shale reservoirs—A new porous media research frontier. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 112–113, 17–33. [Google Scholar] [CrossRef]
- Fleury, M.; Romero-Sarmiento, M. Characterization of shales using T1–T2 NMR maps. J. Pet. Sci. Eng. 2016, 137, 55–62. [Google Scholar] [CrossRef]
- Kausik, R.; Freed, D.; Fellah, K.; Feng, L.; Ling, Y.; Simpson, G. Frequency and temperature dependence of 2D NMR T1–T2 maps of shale. Petrophysics 2019, 60, 37–49. [Google Scholar] [CrossRef]
- Tan, M.; Mao, K.; Song, X.; Yang, X.; Xu, J. NMR petrophysical interpretation method of gas shale based on core NMR experiment. J. Pet. Sci. Eng. 2015, 136, 100–111. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Lu, J.; Jin, W. Determining the content of free methane gas and adsorbed methane gas in shale using nuclear magnetic resonance technology. Logging Technol. 2018, 42, 71–76. [Google Scholar]
- Xiao, W.; Zhang, J.; Du, Y.; Zhao, J.; Zhao, Z. Experimental study on NMR response characteristics of shale imbibition under pressure. J. Southwest Pet. Univ. (Nat. Sci. Ed.) 2019, 41, 13–18. [Google Scholar]
- Liu, Z.; Yang, D.; Shao, J.; Hu, Y. Study on the pore connectivity evolution of Fushun oil shale based on low-field nuclear magnetic resonance. J. Spectrosc. 2019, 36., 309–318. [Google Scholar]
- Ma, X.; Wang, H.; Zhou, S.; Feng, Z.; Guo, W. Insights into nmr response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas Sci. Eng. 2020, 84, 103674. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, X.; Bai, L.; Lu, R. Investigation of Oil and Water Migrations in Lacustrine Oil Shales Using 20 MHz 2D NMR Relaxometry Techniques. Pet. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, Z.; Hu, Z.; Chang, J.; Zhan, H. Characterization and interpretation of organic matter, clay minerals, and gas shale rocks with low-field nmr. J. Pet. Sci. Eng. 2020, 195, 107926. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Meng, J. Well logging curve generation method based on recurrent neural network. Pet. Explor. Dev. 2018, 45, 598–607. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Current status and prospects of artificial intelligence processing and interpretation of logging data. Logging Technol. 2021, 45, 345–356. [Google Scholar]
- Kang, D.; Wang, X.; Zheng, X.; Zhao, Y.-P. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra. Fuel 2021, 290, 120006. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Kadkhodaie, A. Application of ensemble machine learning methods for kerogen type estimation from petrophysical well logs. J. Pet. Sci. Eng. 2022, 208 Pt B, 109455. [Google Scholar] [CrossRef]
- Meng, M.; Zhong, R.; Wei, Z. Prediction of methane adsorption in shale: Classical models and machine learning based models. Fuel 2020, 278, 118358. [Google Scholar] [CrossRef]
- Wu, Y.; Misra, S.; Sondergeld, C.; Curtis, M.; Jernigen, J. Machine learning for locating organic matter and pores in scanning electron microscopy images of organic-rich shales. Fuel 2019, 253, 662–676. [Google Scholar] [CrossRef]
- Tamoto, H.; dos Santos Gioria, R.; de Carvalho Carneiro, C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. J. Pet. Sci. Eng. 2023, 220, 111169. [Google Scholar] [CrossRef]
- Zhuoke, L.; Lin, T.; Liu, X.; Ma, S.; Li, X.; Yang, F.; He, B.; Liu, J.; Zhang, Y.; Xie, L. High-temperature-induced pore system evolution of immature shale with different total organic carbon contents. ACS Omega 2023, 8, 12773–12786. [Google Scholar] [CrossRef] [PubMed]
- Bloembergen, N. Nuclear Magnetic Relaxation; Benjamin: New York, NY, USA, 1961. [Google Scholar]
Number of Trainings | Confidence | Precision |
---|---|---|
1 | 0.936 | 1 |
5 | 0.939 | 1 |
8 | 0.962 | 1 |
10 | 0.943 | 1 |
15 | 0.950 | 1 |
Number of Trainings | Confidence | Recall |
---|---|---|
1 | 0 | 0.33 |
5 | 0 | 0.90 |
8 | 0 | 0.86 |
10 | 0 | 0.92 |
15 | 0 | 0.90 |
Number of Trainings | Confidence | F1_Score |
---|---|---|
1 | 0.786 | 0.33 |
5 | 0.841 | 0.90 |
8 | 0.843 | 0.85 |
10 | 0.816 | 0.92 |
15 | 0.820 | 0.89 |
TN | Box | O | C | P | R | VB | VO | VC | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.029 | 0.029 | 0.005 | 0.33 | 0.33 | 0.02 | 0.01 | 0.0020 | 0.18 | 0.06 |
5 | 0.017 | 0.022 | 0.002 | 0.90 | 0.90 | 0.01 | 0.01 | 0.0008 | 0.86 | 0.37 |
8 | 0.017 | 0.022 | 0.002 | 0.85 | 0.86 | 0.01 | 0.01 | 0.0008 | 0.81 | 0.33 |
10 | 0.017 | 0.021 | 0.002 | 0.91 | 0.92 | 0.01 | 0.01 | 0.0008 | 0.90 | 0.34 |
15 | 0.017 | 0.021 | 0.002 | 0.89 | 0.90 | 0.01 | 0.01 | 0.0008 | 0.86 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Liang, C.; Zeng, C.; Chen, R. Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry 2024, 10, 70. https://doi.org/10.3390/magnetochemistry10100070
Jia Z, Liang C, Zeng C, Chen R. Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry. 2024; 10(10):70. https://doi.org/10.3390/magnetochemistry10100070
Chicago/Turabian StyleJia, Zijian, Can Liang, Chunlin Zeng, and Rui Chen. 2024. "Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning" Magnetochemistry 10, no. 10: 70. https://doi.org/10.3390/magnetochemistry10100070
APA StyleJia, Z., Liang, C., Zeng, C., & Chen, R. (2024). Identifying Different Components of Oil and Gas Shale from Low-Field NMR Two-Dimensional Spectra Based on Deep Learning. Magnetochemistry, 10(10), 70. https://doi.org/10.3390/magnetochemistry10100070