Sensitivity Consequences of Ethylene in Determining the Vase Life of Eremurus spectabilis and E. persicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Ethylene Production
2.3. Ethylene Treatment
2.4. Ethylene Inhibitor (1-MCP and STS) Treatments
2.4.1. Measurements
Vase Performance Assessments
Measurement of Water Relations
Relative Fresh Weight
2.5. Statistical Analysis
3. Results
3.1. Effects of Exogenous Ethylene on the Appearance and Vase Lives of Two Eremurus Species
3.2. Endogenous Ethylene Production Rates and Patterns
3.3. Effects of Ethylene Inhibitors on the Vase Lives and Water Relation of Cut Inflorescences of the Two Test Species
3.3.1. Water Uptake
3.3.2. Water Loss (Transpiration)
3.3.3. Water Balance
3.3.4. Relative Fresh Weight
3.3.5. Vase Life
3.3.6. Associations between Traits
4. Discussion
4.1. Effects of Exogenous Ethylene on the Appearance and Vase Lives of Two Eremurus Species
4.2. Endogenous Ethylene Production Rates and Patterns
4.3. Effects of Ethylene Inhibitors on the Vase Lives and Water Relation of Cut Inflorescences of the Two Test Species
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darras, A. Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae 2021, 14, 51. [Google Scholar] [CrossRef]
- Basiri, Y.; Etemadi, N.; Alizadeh, M.; Nikbakht, A.; Saeidi, G. Vase life consequences of natural and chemical treatments in foxtail lily (Eremurus spectabilis), as a specialty cut flowers. Ornam. Hortic. 2022, 28, 120–129. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M.; Schiappacasse, F.; Saleem, M.; Manzano, E. Optimal postharvest handling protocols for cut ‘Line Dance’and ‘Tap Dance’ Eremurus inflorescences. Sci. Hortic. 2014, 179, 212–220. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Rabinowitch, E. Flowering response of Eremurus to post-harvest temperatures. Sci. Hortic. 1999, 79, 75–86. [Google Scholar] [CrossRef]
- Wendelbo, P. Further notes on Eremurus (Liliaceae) in Afghanistan. Acta Hortic. Gotobg. 1966, 28, 57–63. [Google Scholar]
- Hadizadeh, H.; Bahri, B.A.; Qi, P.; Wilde, H.D.; Devos, K.M. Intra-and interspecific diversity analyses in the genus Eremurus in Iran using genotyping-by-sequencing reveal geographic population structure. Hortic. Res. 2020, 7, 30. [Google Scholar] [CrossRef]
- Scariot, V.; Paradiso, R.; Rogers, H.; De Pascale, S. Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biol. Technol. 2014, 97, 83–92. [Google Scholar] [CrossRef]
- Rihn, A.L.; Yue, C.; Hall, C.; Behe, B.K. Consumer preferences for longevity information and guarantees on cut flower arrangements. HortScience 2014, 49, 769–778. [Google Scholar] [CrossRef]
- Woltering, E.J.; van Doorn, W.G. Role of ethylene in senescence of petals—Morphological and taxonomical relationships. J. Exp. Bot. 1988, 39, 1605–1616. [Google Scholar] [CrossRef]
- Rogers, H.J. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol. 2013, 82, 563. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Kende, H. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 283–307. [Google Scholar] [CrossRef]
- Goh, C.J.; Halevy, A.H.; Engelb, R.; Kofranek, A.M. Ethylene evolution and sensitivity in cut orchid flowers. Sci. Hortic. 1985, 26, 56–57. [Google Scholar] [CrossRef]
- Porat, R.; Halevy, A.H.; Serek, M.; Borochov, A. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiol. Plant. 1995, 93, 778–784. [Google Scholar] [CrossRef]
- Wongjunta, M.; Wongs-Aree, C.; Salim, S.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Involvement of ethylene in physiological processes determining the vase life of various hybrids of Mokara orchid cut flowers. Agronomy 2021, 11, 160. [Google Scholar] [CrossRef]
- Serek, M.; Sisler, E.C.; Reid, M.S. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul. 1995, 16, 93–97. [Google Scholar] [CrossRef]
- van Doorn, W.G. Categories of petal senescence and abscission: A re-evaluation. Ann. Bot. 2001, 87, 447–456. [Google Scholar] [CrossRef]
- Wu, M.J.; van Doorn, W.G.; Reid, M.S. Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. I. Comparison of flower life, respiration and ethylene biosynthesis. Sci. Hortic. 1991, 48, 99–107. [Google Scholar] [CrossRef]
- Ichimura, K.; Yoshioka, S.; Shimizu-Yumoto, H. Effects of silver thiosulfate complex (STS), sucrose and combined pulse treatments on the vase life of cut snapdragon flowers. Environ. Control Biol. 2008, 46, 155–162. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Rochala-Wojciechowska, J. Nanosilver and sucrose delay the senescence of cut snapdragon flowers. Postharvest Biol. Technol. 2020, 165, 111165. [Google Scholar] [CrossRef]
- Ha, S.T.; In, B.C. Combined Nano Silver, α-Aminoisobutyric Acid, and 1-Methylcyclopropene Treatment Delays the Senescence of Cut Roses with Different Ethylene Sensitivities. Horticulturae 2022, 8, 482. [Google Scholar] [CrossRef]
- Shimizu-Yumoto, H.; Ichimura, K. Postharvest characteristics of cut dahlia flowers with a focus on ethylene and effectiveness of 6-benzylaminopurine treatments in extending vase life. Postharvest Biol. Technol. 2013, 86, 479–486. [Google Scholar] [CrossRef]
- Azuma, M.; Onozaki, T.; Ichimura, K. Difference of ethylene production and response to ethylene in cut flowers of dahlia (Dahlia variabilis) cultivars. Sci. Hortic. 2020, 273, 109635. [Google Scholar] [CrossRef]
- Veen, H. Silver thiosulphate: An experimental tool in plant science. Sci. Hortic. 1983, 20, 211–224. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Li, H.; Lin, X.; Lin, S.; Joyce, D.C.; He, S. Alleviation of effects of exogenous ethylene on cut ‘Master’carnation flowers with nano-silver and silver thiosulfate. Postharvest Biol. Technol. 2018, 143, 86–91. [Google Scholar] [CrossRef]
- Williamson, V.G.; Rezvani, F.; Li, G.; Hepworth, G. An investigation of ethylene sensitivity in three Australian native cut flower genera, Calothamnus, Grevillea and Philotheca. Sci. Hortic. 2018, 230, 149–154. [Google Scholar] [CrossRef]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Dole, J.M.; Wilkins, H.F. Floriculture: Principles and Species, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005; p. 1023. [Google Scholar]
- Onozaki, T.; Ikeda, H.; Shibata, M. Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Sci. Hortic. 2004, 99, 187–197. [Google Scholar] [CrossRef]
- van Doorn, W.G. Water relations of cut flowers: An update. Hortic. Rev. 2012, 40, 55–106. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Jimenez-Becker, S.; Manzano-Medina, S.; Jamilena-Quesada, M.; Lao-Arenas, M.T. Evaluation of ethylene production by ten Mediterranean carnation cultivars and their response to ethylene exposure. Span. J. Agric. Res. 2011, 9, 524–530. [Google Scholar] [CrossRef]
- Müller, R.; Anderson, A.S.; Serek, M. Differences in display life of miniature potted roses (Rosa hybrida L.). Sci. Hortic. 1998, 76, 59–71. [Google Scholar] [CrossRef]
- Porat, R.; Reuveny, Y.; Borochov, A.; Halevy, A.H. Petunia flower longevity: The role of sensitivity to ethylene. Physiol. Plant. 1993, 89, 291–294. [Google Scholar] [CrossRef]
- Darras, A.I.; Kargakou, V. Postharvest physiology and handling of cut Spartium junceum inflorescences. Sci. Hortic. 2019, 252, 130–137. [Google Scholar] [CrossRef]
- Macnish, A.J.; Hofman, P.J.; Joyce, D.C.; Simons, D.H. Involvement of ethylene in postharvest senescence of Boronia heterophylla flowers. Aust. J. Exp. Agric. 1999, 39, 911–913. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Stead, A.D. Abscission of flowers and floral parts. J. Exp. Bot. 1997, 48, 821–837. [Google Scholar] [CrossRef]
- Singh, A.P.; Pandey, S.P.; Pandey, S.; Nath, P.; Sane, A.P. Transcriptional activation of a pectate lyase gene, RbPel1, during petal abscission in rose. Postharvest Biol. Technol. 2011, 60, 143–148. [Google Scholar] [CrossRef]
- Singh, A.P.; Tripayhi, S.K.; Nath, P.; Sane, A.P. Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransglucosylase/ hydrolase genes, RbXTH1, and RbXTH2. J. Exp. Bot. 2011, 62, 5091–5103. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Shimizu, H.; Onozaki, T.; Tanikawa, N.; Ikeda, H.; Hisamatsu, T.; Ichimura, K. Role of ethylene in senescence of pollinated and unpollinated Campanula medium flowers. J. Jpn. Soc. Hortic. Sci. 2002, 71, 385–387. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Cevallos, J.C.; Reid, M.S. Temperature, ethylene and the postharvest performance of cut snapdragons (Antirrhinum majus). Sci Hort. 2010, 125, 429–433. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M. Optimal postharvest handling protocols for Celosia argentea var. cristata L. ‘Fire Chief’ and Antirrhinum majus L. ‘Chantilly Yellow’. Sci. Hortic. 2014, 172, 308–316. [Google Scholar] [CrossRef]
- Sapbua, D.; Samniangdee, P.; Uthairatanakij, A.; Buanong, M. 1-Methylcyclopropene affected the quality in long vase life of ‘Red Sonia’ Dendrobium Flower. Acta Hortic. 2013, 970, 217–221. [Google Scholar] [CrossRef]
- Khunmuang, S.; Kanlayanarat, S.; Wongs-Aree, C.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Effect of ethephon and 1-MCP treatment on the vase life of cut ‘Sansai blue’ Vanda. Acta Hortic. 2016, 1131, 119–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed Mahmoudian, S.; Etemadi, N.; Amirikhah, R.; Panahi, S. Sensitivity Consequences of Ethylene in Determining the Vase Life of Eremurus spectabilis and E. persicus. Horticulturae 2023, 9, 978. https://doi.org/10.3390/horticulturae9090978
Sayed Mahmoudian S, Etemadi N, Amirikhah R, Panahi S. Sensitivity Consequences of Ethylene in Determining the Vase Life of Eremurus spectabilis and E. persicus. Horticulturae. 2023; 9(9):978. https://doi.org/10.3390/horticulturae9090978
Chicago/Turabian StyleSayed Mahmoudian, Somaye, Nematollah Etemadi, Rahim Amirikhah, and Shadab Panahi. 2023. "Sensitivity Consequences of Ethylene in Determining the Vase Life of Eremurus spectabilis and E. persicus" Horticulturae 9, no. 9: 978. https://doi.org/10.3390/horticulturae9090978
APA StyleSayed Mahmoudian, S., Etemadi, N., Amirikhah, R., & Panahi, S. (2023). Sensitivity Consequences of Ethylene in Determining the Vase Life of Eremurus spectabilis and E. persicus. Horticulturae, 9(9), 978. https://doi.org/10.3390/horticulturae9090978