Cloning, Characterization, and Functional Analysis of EuTIL1, a Gene-Encoding Temperature-Induced Lipocalin in Eucommia ulmoides Oliv
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Method
2.2.1. Total RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis
2.2.2. Gene Cloning
2.2.3. Bioinformatics Analysis
2.2.4. Carrier Construction
2.2.5. Agrobacterium-Mediated Transformation and Identification of Nicotiana tabacum Xanthi
2.2.6. Gene Expression Analysis in Eucommia ulmoides
2.2.7. Subcellular Localization Analysis
2.2.8. Water Loss Rate and Electrical Conductivity of Blades Treated at Low Temperature (4 °C) for 24 h
2.2.9. Determination of Physiological and Biochemical Indexes
2.2.10. Analysis of Gene Expression in Response to Low-Temperature Stress
2.2.11. Data Statistics and Analysis
3. Results and Analysis
3.1. EuTIL1 Gene Cloning and Bioinformatics Analysis
3.2. EuTIL1 Gene Spatiotemporal Expression in Eucommia ulmoides Plants
3.3. Subcellular Localization Analysis of EuTIL1
3.4. Effect of EuTIL1 on Cold Resistance of Tobacco
3.4.1. Electrical Conductivity of Low-Temperature-Treated Tobacco
3.4.2. Effect of EuTIL1 on the Activity of Antioxidant Enzymes and MDA Content
3.4.3. Effect of EuTIL1 on Expression Level of Cold-Induced Genes in Tobacco Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Guo, F.F.; Xiao, J.P.; Wei, J.Y.; Tang, L.Y.; Yang, H.J. Research advances in chemical constituents and pharmacological activities of different parts of Eucommia ul-moides. Chin. Pharm. J. 2020, 45, 479–512. [Google Scholar]
- Wei, X.; Peng, P.; Peng, F.; Dong, J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. Agric. Food Chem. 2021, 69, 3797–3821. [Google Scholar] [CrossRef] [PubMed]
- Ganfornina, M.D.; Sánchez, D.; Bastiani, M.J. Lazarillo, a new GPI-linked surface lipocalin, is restricted to a subset of neurons in the grasshopper embryo. Development 1995, 121, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.P.; You, W.Z.; LI, L.; Li, J.; Sun, Y.; Liu, Y.; Jia, C.J. Current situation and development proposal of Eucommia ulmoides introduction in Liaoning. Liaoning For. Sci. Technol. 2019, 05, 58–59. [Google Scholar]
- Charron, J.B.; Ouellet, F.; Pelletier, M.; Danyluk, J.; Chauve, C.; Sarhan, F. Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol. 2005, 139, 2017–2028. [Google Scholar] [CrossRef]
- Zhao, D.G.; Li, Y.; Zhao, Y.C.; Zhao, D.; Lv, L.T.; Liu, S.H.; Song, L.; Dong, X.; Feng, Y. Transcriptome data assembly and gene function annotation of female and male plants in Eucom-mia ulmoides. J. Mt. Agric. Biol. 2015, 34, 1–13. [Google Scholar]
- Suzuki, K.; Lareyre, J.J.; Sánchez, D.; Gutierrez, G.; Araki, Y.; Matusik, R.J.; Orgebin-Crist, M.C. Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene 2004, 339, 49–59. [Google Scholar] [CrossRef]
- Flower, D.R. Structural relationship of streptavidin to the calycin protein superfamily. FEBS Lett. 1993, 333, 99–102. [Google Scholar] [CrossRef]
- Flower, D.R.; North, A.C.; Sansom, C.E. The lipocalin protein family: Structural and sequence overview. Biochim. Biophys. Acta 2000, 1482, 9–24. [Google Scholar] [CrossRef]
- Charron, J.B.F.; Breton, G.; Badawi, M.; Sarhan, F. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett. 2002, 517, 129–132. [Google Scholar] [CrossRef]
- Huang, Q.X.; Liao, X.Q.; Yang, X.H.; Luo, Y.C.; Lin, P.; Zeng, Q.H. Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum. Plant Biotechnol. J. (PBJ) 2020, 19, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Kjellsen, T.D.; Shiryaeva, L.; SchraDer, W.P.; Strimbeck, G.R. Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). J. Proteom. 2010, 73, 965–975. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Sambe, M.A.N.; Zhuo, C.L.; Tu, Q.H.; Guo, Z.F. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol. Biol. 2015, 87, 645–654. [Google Scholar] [CrossRef]
- Chi, W.; Fung, R.W.M.; Liu, H.; Hsu, C.; Charng, Y. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ. 2009, 32, 917–927. [Google Scholar] [CrossRef]
- Guan, S.; Su, W. Advances in the study of chemical constituents and pharmacology of Eucommia ulmoides Oliver. Zhong Yao Cai 2003, 26, 124–129. [Google Scholar]
- Kenneth, S.T.L. Analysis of Relative Gene Expression Data Using RT-qPCR pdf. Methods 2001, 25, 402–408. [Google Scholar]
- Ren, C.; Mayumi, G.; Yoshihisa, N.; Koichiro, G. Selection of Housekeeping Genes for Transgene Expression Analysis in Eucommia ulmoides Oliver Using Real-Time RT-PCR. J. Bot. 2010, 2010, 1–7. [Google Scholar]
- Liu, Y.; Ran, X.; Zhao, D.G. Transgenic Tobacco with EuAFP1.2 Gene Improves Fungal Disease Resistance. Genom. Appl. Biol. 2022, 40, 1767–1778. [Google Scholar]
- Li, X. Infiltration of Nicotiana benthamiana Protocol for Transient Expression via Agrobacterium. Bio-Protocol 2011, 2011, e95. [Google Scholar] [CrossRef]
- Fryd, C.F.M. The determination of moisture in tobacco. Anal. Anal. J. R. Soc. Chem. A Mon. Int. Publ. Deal. All Branches Anal. Chem. 1951, 76, 25–32. [Google Scholar] [CrossRef]
- Avi-Dor, Y.; Lipkin, R. A spectrophotometric method for the determination of reduced glutathione. J. Biol. Chem. 1958, 233, 69. [Google Scholar] [CrossRef]
- Masayasu, M.; Hiroshi, Y. A simplified assay method of superoxide dismutase activity for clinical use. Clin. Chim. Acta 1979, 92, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Reuveni, R. Peroxidase Activity as a Biochemical Marker for Resistance of Muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology 1992, 82, 749–753. [Google Scholar] [CrossRef]
- Jan, B.; Roel, M. An Improved Colorimetric Method to Quantify Sugar Content of Plant Tissue. J. Exp. Bot. 1993, 44, 1627–1629. [Google Scholar]
- Hernández-Gras, F.; Boronat, A. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin. Plant Mol. Biol. 2015, 88, 301–311. [Google Scholar] [CrossRef]
- Bishop, R.E. The bacterial lipocalins. Biochim. Biophys. Acta 2000, 1482, 73–83. [Google Scholar] [CrossRef]
- Brugière, S.; Kowalski, S.; Ferro, M.; Seigneurin-Berny, D.; Miras, S.; Salvi, D.; Ravanel, S.; D’hérin, P.; Garin, J.; Bourguignon, J.; et al. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 2004, 65, 1693–1707. [Google Scholar] [CrossRef]
- Dunkley, T.P.; Hester, S.; Shadforth, I.P.; Runions, J.; Weimar, T.; Hanton, S.L.; Griffin, J.L.; Bessant, C.; Brandizzi, F.; Hawes, C.; et al. Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 2006, 103, 6518–6523. [Google Scholar] [CrossRef]
- Eubel, H.; Meyer, E.H.; Taylor, N.L.; Bussell, J.D.; O’Toole, N.; Heazlewood, J.L.; Castleden, I.; Small, I.D.; Smith, S.M.; Millar, A.H. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol. 2008, 148, 1809–1829. [Google Scholar] [CrossRef]
- Abo-Ogiala, A.; Carsjens, C.; Diekmann, H.; Fayyaz, P.; Herrfurth, C.; Feussner, I.; Polle, A. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J. Plant Physiol. 2014, 171, 250–259. [Google Scholar] [CrossRef]
- Guo, X.; Liu, D.; Chong, K. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 2018, 60, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Feng, S.; Yu, X.; Zhou, A. Morphological and physiological responses of Dianthus spiculifolius high wax mutant to low-temperature stress. J. Plant Physiol. 2022, 275, 153762. [Google Scholar] [CrossRef] [PubMed]
- Baier, M.; Kandlbinder, A.; Golldack, D.; Dietz, K.J. Oxidative stress and ozone: Perception, signalling and response. Plant Cell Environ. 2005, 28, 1012–1020. [Google Scholar] [CrossRef]
- Lee, C.H. Cryopreservation of seeds of blue waterlily (Nymphaea caerulea) using glutathione adding plant vitrification solution, PVS+. arXiv 2022, arXiv:2203.14201. [Google Scholar]
- Song, X.G.; She, X.P. The Generation and the Role of Hydrogen Peroxide in Plant. J. Lianyungang Norm. Coll. 2010, 04, 99–103. [Google Scholar]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453–455. [Google Scholar]
- Heidari, P.; Entazari, M.; Ebrahimi, A.; Ahmadizadeh, M.; Vannozzi, A.; Palumbo, F.; Barcaccia, G. Exogenous EBR Ameliorates Endogenous Hormone Contents in Tomato Species under Low-Temperature Stress. Horticulturae 2021, 7, 84. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Z.; Wu, M.; Wang, W.; Wang, Y.; Nie, S. Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato. Plant Sci. 2022, 320, 111281. [Google Scholar] [CrossRef]
- Fowler, S.; Thomashow, M.F. Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. Imp. Coll. Lond. 2002, 14, 1675–1690. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed]
- Hayat, F.; Sun, Z.; Ni, Z.; Iqbal, S.; Gu, X. Exogenous Melatonin Improves Cold Tolerance of Strawberry (Fragaria × ananassa Duch.) through Modulation of DREB/CBF-COR Pathway and Antioxidant Defense System. Horticulture 2022, 8, 194. [Google Scholar] [CrossRef]
- Medina, J.; Catalá, R.; Salinas, J. The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Sci. 2011, 180, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Steponkus, P.L.; Uemura, M.; Joseph, R.A.; Gilmour, S.J.; Thomashow, M.F. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 1998, 95, 14570–14575. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.S.; Wilhelm, K.S.; Thomashow, M.F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 1994, 24, 701–713. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhao, D. Cloning, Characterization, and Functional Analysis of EuTIL1, a Gene-Encoding Temperature-Induced Lipocalin in Eucommia ulmoides Oliv. Horticulturae 2023, 9, 950. https://doi.org/10.3390/horticulturae9090950
Wu X, Zhao D. Cloning, Characterization, and Functional Analysis of EuTIL1, a Gene-Encoding Temperature-Induced Lipocalin in Eucommia ulmoides Oliv. Horticulturae. 2023; 9(9):950. https://doi.org/10.3390/horticulturae9090950
Chicago/Turabian StyleWu, Xi, and Degang Zhao. 2023. "Cloning, Characterization, and Functional Analysis of EuTIL1, a Gene-Encoding Temperature-Induced Lipocalin in Eucommia ulmoides Oliv" Horticulturae 9, no. 9: 950. https://doi.org/10.3390/horticulturae9090950
APA StyleWu, X., & Zhao, D. (2023). Cloning, Characterization, and Functional Analysis of EuTIL1, a Gene-Encoding Temperature-Induced Lipocalin in Eucommia ulmoides Oliv. Horticulturae, 9(9), 950. https://doi.org/10.3390/horticulturae9090950