Application and Expansion of Virus-Induced Gene Silencing for Functional Studies in Vegetables
Abstract
:1. Virus-Induced Gene Silencing (VIGS) System
2. Advantages of VIGS
2.1. Transient Silence of VIGS
2.2. VIGS Overcomes Functional Redundancy
2.3. VIGS Overcomes Conditional Constraints
2.4. Disadvantages VIGS
3. VIGS Applications in Vegetable Plants
Viral Vectors | Host Range | Virus Symptoms | Features | Reference |
---|---|---|---|---|
TRV | Solanaceae, Asteraceae, Leguminosae, etc. More than 12 families and 60 species | Minor | The VIGS expression system has been successfully established in a wide range of hosts, while the effectiveness in cucurbits needs further validation. | [33,35,36,37] |
ALSV | Solanaceae, Leguminosae, Cucurbitaceae, Brassicaceae, etc. | No symptoms | Long-term effective induction of stable virus-induced gene silencing, but the expression of the viral genome needs to be processed by a dedicated protease, limiting its application. | [38,39,40] |
TRSV | Leguminosae, Cucurbitaceae, etc. | Minor | Silencing efficiency was high in both model plants and crops, but the infestation feasibility of TRSV’s infestation clones in watermelon was not confirmed. | [41,42,43] |
CGMMV | Cucurbitaceae | Minor | CGMMV is a single RNA virus, and, although it is easy to manipulate, the silencing effect is limited to the vicinity of leaf veins. | [12,44] |
ToLCV | Solanaceae | Variable | The vector is able to replicate, in different plant species, and efficiently silences PCNA isogenes in the host plant. | [29] |
PVX | Solanaceae | Moderate | The vector is more stable than TMV-based vectors, but the virus is excluded from the host’s growth sites or hyphal tissues. | [45,46,47] |
4. The Function Expansion and Application of Viral Vector
4.1. Virus-Induced Transcriptional Gene Silencing System (VITGS)
4.2. Virus-Induced Gene Overexpression (VIGO)
4.3. Virus-Induced Genome Editing (VIGE)
5. Future Directions
5.1. Viral Silencing Inhibitors That Increase VIGS Efficiency
5.2. The Derivation and Future Development Direction of VIGS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burch Smith, T.M.; Anderson, J.C.; Martin, G.B.; Dinesh Kumar, S.P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 2004, 39, 734–746. [Google Scholar] [CrossRef]
- Lu, R.; Martin Hernandez, A.M.; Peart, J.R.; Malcuit, I.; Baulcombe, D.C. Virus-induced gene silencing in plants. Methods 2003, 30, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Li, Y.; An, W.; Jiao, E.; Zhao, J.; Liu, L.; Qin, K.; Cao, Y. Applications of virus-induced gene silencing for analysis of gene function in Solanaceae species. J. Henan Agric. Sci. 2018, 47, 8–19. [Google Scholar]
- Sijen, T.; Kooter, J.M. Post-transcriptional gene-silencing: RNAs on the attack or on the defense? Bioessays 2000, 22, 520–531. [Google Scholar] [CrossRef]
- Ratcliff, F.; Martin Hernandez, A.M.; Baulcombe, D.C. Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2001, 25, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Mendell, J.T. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genom. Hum. Genet. 2007, 8, 215–239. [Google Scholar] [CrossRef]
- Scholthof, H.B.; Scholthof, K.G. Plant virology: An RNA treasure trove. Trends Plant Sci. 2023, 223, 1360–1385. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Dasaradhi, P.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef]
- Ramanna, H.; Ding, X.S.; Nelson, R.S. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Virus-Induc. Gene Silenc. Methods Protoc. 2013, 975, 15–32. [Google Scholar]
- Robertson, D. VIGS vectors for gene silencing: Many targets, many tools. Annu. Rev. Plant Biol. 2004, 55, 495–519. [Google Scholar] [CrossRef]
- Scofield, S.R.; Nelson, R.S. Resources for virus-induced gene silencing in the grasses. Plant Physiol. 2009, 149, 152–157. [Google Scholar] [CrossRef]
- Senthil-Kumar, M.; Mysore, K.S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol. J. 2011, 9, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, H.; Ma, X.; Msanne, J.; Repas, T. RNA-mediated silencing in algae: Biological roles and tools for analysis of gene function. Eukaryot. Cell 2011, 10, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Kalantidis, K.; Schumacher, H.T.; Alexiadis, T.; Helm, J.M. RNA silencing movement in plants. Biol. Cell 2008, 100, 13–26. [Google Scholar] [CrossRef]
- Ramegowda, V.; Mysore, K.S.; Senthil-Kumar, M. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front. Plant Sci. 2014, 5, 323. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, M.; Anand, A.; Uppalapati, S.R.; Mysore, K.S. Virus-induced gene silencing and its applications. CABI Rev. 2008, 3, 11. [Google Scholar] [CrossRef]
- Baulcombe, D.C. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 1999, 2, 109–113. [Google Scholar] [CrossRef]
- Sasaki, S.; Yamagishi, N.; Yoshikawa, N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods 2011, 7, 15. [Google Scholar] [CrossRef]
- Fu, D.; Zhu, B.; Zhu, H.; Zhang, H.; Xie, Y.; Jiang, W.; Zhao, X.; Luo, Y. Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol. Cells 2006, 21, 153–160. [Google Scholar]
- Yuan, C.; Li, C.; Yan, L.; Jackson, A.O.; Liu, Z.; Han, C.; Yu, J.; Li, D. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS ONE 2011, 6, e26468. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Han, R. Advances in the application of virus-induced gene silencing in plants. Am. J. Plant Sci. 2019, 10, 1649–1661. [Google Scholar] [CrossRef]
- Anusha, M.; Roy, K.; Maiti, A.K. Feeding efficiency of predatory spiders on Myzus persicae (Sulzer). Indian J. Entomol. 2022, 84, 129–131. [Google Scholar]
- Liu, T.; Li, Y.; Zhang, C.; Duan, W.; Huang, F.; Hou, X. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage. Funct. Integr. Genom. 2014, 14, 731–739. [Google Scholar] [CrossRef]
- Bahieldin, A.; Atef, A.; Edris, S.; Gadalla, N.O.; Ali, H.M.; Hassan, S.M.; Al Kordy, M.A.; Ramadan, A.M.; Makki, R.M.; Al Hajar, A.S. Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol. 2016, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Yellina, A.L.; Orashakova, S.; Gadalla, N.O.; Ali, H.M.; Hassan, S.M.; Al Kordy, M.A.; Ramadan, A.M.; Makki, R.M.; Al Hajar, A.S. Virus-induced gene silencing (VIGS) in plants: An overview of target species and the virus-derived vector systems. Virus-Induc. Gene Silenc. Methods Protoc. 2013, 80, 975. [Google Scholar]
- Kurreck, J. RNA interference: From basic research to therapeutic applications. Angew. Chem. Int. Ed. 2009, 48, 1378–1398. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, J.W.; Leu, W.M.; Huang, Y.T.; Huang, Y.W.; Hsu, Y.H.; Meng, M. Proliferating cell nuclear antigen suppresses RNA replication of Bamboo mosaic virus through an interaction with the viral genome. J. Virol. 2019, 93, e00961-19. [Google Scholar] [CrossRef]
- Kelman, Z. PCNA: Structure, functions and interactions. Oncogene 1997, 14, 629–640. [Google Scholar] [CrossRef]
- Pandey, P.; Choudhury, N.R.; Mukherjee, S.K. A geminiviral amplicon (VA) derived from Tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector. Virol. J. 2009, 6, 152. [Google Scholar] [CrossRef]
- Waterhouse, P.M.; Helliwell, C.A. Exploring plant genomes by RNA-induced gene silencing. Nat. Rev. Genet. 2003, 4, 29–38. [Google Scholar] [CrossRef]
- Zhou, P.; Peng, J.; Zeng, M.; Wu, L.; Fan, Y.; Zeng, L. Virus-induced gene silencing (VIGS) in Chinese narcissus and its use in functional analysis of NtMYB3. Hortic. Plant J. 2021, 7, 565–572. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, J.; Tai, D.; Li, K.; Zhu, Y.; Yao, Y. An optimized TRV-based virus-induced gene silencing protocol for Malus crabapple. Plant Cell Tissue Organ Cult. 2016, 126, 499–509. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, Y.; Liu, D.; Wang, H.; Zhang, X.; Liu, T.; Wang, J.; Li, Y.; Ou, L.; Liu, F.; et al. Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnol. J. 2021, 19, 2398–2400. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Pirrello, J.; Regad, F.; Bouzayen, M.; Deng, W.; Li, Z. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J. Exp. Bot. 2010, 61, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ding, B.; Fei, Z.; Wang, Y. Comprehensive transcriptome analyses reveal tomato plant responses to tobacco rattle virus-based gene silencing vectors. Sci. Rep. 2017, 7, 9771. [Google Scholar] [CrossRef]
- Quadrana, L.; Rodriguez, M.C.; Lopez, M.; Bermudez, L.; Nunes Nesi, A.; Fernie, A.R.; Descalzo, A.; Asis, R.; Rossi, M.; Asurmendi, S.; et al. Coupling virus-induced gene silencing to exogenous Green Fluorescence Protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. Plant Physiol. 2011, 156, 1278–1291. [Google Scholar] [CrossRef]
- Liu, E.; Page, J.E. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods 2008, 4, 5. [Google Scholar] [CrossRef]
- Yamagishi, N.; Yoshikawa, N. Efficient virus-induced gene silencing system in pumpkin (Cucurbita maxima) using apple latent spherical virus vector. J. Virol. Methods 2022, 301, 114456. [Google Scholar] [CrossRef]
- Yaegashi, H.; Yamatsuta, T.; Takahashi, T.; Li, C.; Isogai, M.; Kobori, T.; Ohki, S.; Yoshikawa, N. Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch. Virol. 2007, 152, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Devani, R.S.; Kute, A.; John, S.; Adhikari, S.; Sinha, S.; Banerjee, A.K. Development of a Virus-Induced Gene Silencing System for Dioecious Coccinia grandis. Mol. Biotechnol. 2020, 62, 412–422. [Google Scholar] [CrossRef]
- Zhao, F.; Lim, S.; Igori, D.; Yoo, R.H.; Kwon, S.Y.; Moon, J.S. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology 2016, 492, 166–178. [Google Scholar] [CrossRef]
- Fang, L.; Wei, X.; Liu, L.; Zhou, L.; Tian, Y.; Geng, C.; Li, X. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. Plant Physiol. 2021, 186, 853–864. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Sarmiento, C.; Kiisma, M.; Koivumaki, S.; Lemmetty, A.; Truve, E.; Lehto, K. Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species. J. Gen. Virol. 2008, 89, 1502–1508. [Google Scholar] [CrossRef]
- Bi, X.; Guo, H.; Li, X.; Zheng, L.; An, M.; Xia, Z.; Wu, Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. Mol. Plant Pathol. 2022, 23, 1361–1380. [Google Scholar] [CrossRef] [PubMed]
- Roshan, P.; Kulshreshtha, A.; Kumar, S.; Purohit, R.; Hallan, V. AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Sci. Rep. 2018, 8, 1273. [Google Scholar] [CrossRef]
- Uranga, M.; Aragones, V.; Selma, S.; Vazquez Vilar, M.; Orzaez, D.; Daros, J.A. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J. 2021, 106, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Ariga, H.; Toki, S.; Ishibashi, K. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants. Plant Cell Physiol. 2020, 61, 1946–1953. [Google Scholar] [CrossRef]
- Igarashi, A.; Yamagata, K.; Sugai, T.; Takahashi, Y.; Sugawara, E.; Tamura, A.; Yaegashi, H.; Yamagishi, N.; Takahashi, T.; Isogai, M.; et al. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 2009, 386, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Peele, C.; Jordan, C.V.; Muangsan, N.; Turnage, M.; Egelkrout, E.; Eagle, P.; Hanley Bowdoin, L.; Robertson, D. Silencing of a meristematic gene using geminivirus-derived vectors. Plant J. 2001, 27, 357–366. [Google Scholar] [CrossRef]
- Lu, R.; Malcuit, I.; Moffett, P.; Ruiz, M.T.; Peart, J.; Wu, A.J.; Rathjen, J.P.; Bendahmane, A.; Day, L.; Baulcombe, D.C. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003, 22, 5690–5699. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Wang, X.; Hong, Z.; Yang, A.; Liu, Y.; Yan, L.; He, Y.; Zhu, Z.; Wang, H. PACLOBUTRAZOL-RESISTANCE4 positively regulates cell expansion to promote tendril elongation in cucumber. Plant Physiol. 2023, 192, 2756–2767. [Google Scholar] [CrossRef]
- Shin, S.Y.; Park, M.R.; Kim, H.S.; Moon, J.S.; Lee, H.J. Virus-induced gene silencing shows that LATE FLOWERING plays a role in promoting flower development in soybean. Plant Growth Regul. 2023, 99, 229–239. [Google Scholar] [CrossRef]
- Faivre Rampant, O.; Gilroy, E.M.; Hrubikova, K.; Hein, I.; Millam, S.; Loake, G.J.; Birch, P.; Taylor, M.; Lacomme, C. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol. 2004, 134, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kong, J.; Lai, T.; Manning, K.; Wu, C.; Wang, Y.; Qin, C.; Li, B.; Yu, Z.; Zhang, X. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Sci. Rep. 2015, 5, 7852. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D.C.; Chapman, S.; Santa Cruz, S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995, 7, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Ratcliff, F.; Baulcombe, D.C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 2001, 11, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, A.; Inaba, J.I.; Kasai, M.; Shimura, H.; Masuta, C. RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: A potent gene silencing system to produce a plant that does not carry a transgene but has altered traits. Plant Signal. Behav. 2011, 6, 1090–1093. [Google Scholar] [CrossRef]
- Kon, T.; Yoshikawa, N. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front. Microbiol. 2014, 5, 595. [Google Scholar] [CrossRef]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef]
- Liu, J.; Carmell, M.A.; Rivas, F.V.; Marsden, C.G.; Thomson, J.M.; Song, J.J.; Hammond, S.M.; Joshua Tor, L.; Hannon, G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305, 1437–1441. [Google Scholar] [CrossRef]
- Khan, A.H.; Akram, A.; Saeed, M.; Ur Rahman, M.; Ur Rehman, A.; Mansoor, S.; Amin, I. Establishment of transcriptional gene silencing targeting the promoter regions of GFP, PDS, and PSY genes in cotton using Virus-Induced Gene Silencing. Mol. Biotechnol. 2023, 65, 1052–1061. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Zhang, C.; Li, N.; Zhao, J. The application of CRISPR/Cas technologies to Brassica crops: Current progress and future perspectives. Abiotech 2022, 3, 146–161. [Google Scholar] [CrossRef]
- Paudel, L.; Kerr, S.; Prentis, P.; Tanurdžić, M.; Papanicolaou, A.; Plett, J.M.; Cazzonelli, C.I. Horticultural innovation by viral-induced gene regulation of carotenogenesis. Hortic. Res. 2022, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Nian, H.; Yang, S.; Zhang, X. Development of foreign gene expression strategy in plant virus vector. Northwest J. Bot. 2002, 22, 1268–1274. [Google Scholar]
- Ling, Q.; Sadali, N.M.; Soufi, Z.; Zhou, Y.; Huang, B.; Zeng, Y.; Rodriguez Concepcion, M.; Jarvis, R.P. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nat. Plants 2021, 7, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, R.R.; Koerber, J.T.; Dalkara, D.; Flannery, J.G.; Schaffer, D.V. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS ONE 2009, 4, 7467. [Google Scholar] [CrossRef]
- Rao, S.S.; El-Habbak, M.H.; Havens, W.M.; Singh, A.; Zheng, D.; Vaughn, L.; Haudenshield, J.S.; Hartman, G.L.; Korban, S.S.; Ghabrial, S.A. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol. Plant Pathol. 2014, 15, 145–160. [Google Scholar] [CrossRef]
- Holzberg, S.; Brosio, P.; Gross, C.; Pogue, G.P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 2002, 30, 315–327. [Google Scholar] [CrossRef]
- Cheuk, A.; Houde, M. A new barley stripe mosaic virus allows large protein overexpression for rapid function analysis. Plant Physiol. 2018, 176, 1919–1931. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Gao, G. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell 2020, 181, 136–150. [Google Scholar] [CrossRef]
- Zou, R.; Marin Gonzalez, A.; Liu, Y.; Liu, H.; Shen, L.; Dveirin, R.K.; Luo, J.; Kalhor, R.; Ha, T. Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites. Nat. Cell Biol. 2022, 24, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Li, X.; Zhang, R.; Li, J. Virus-induced gene editing and its applications in plants. Int. J. Mol. Sci. 2022, 23, 10202. [Google Scholar] [CrossRef] [PubMed]
- Dahan Meir, T.; Filler Hayut, S.; Melamed Bessudo, C.; Bocobza, S.; Czosnek, H.; Aharoni, A.; Levy, A.A. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J. 2018, 95, 5–16. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Liu, H.; Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 2020, 6, 773–779. [Google Scholar] [CrossRef]
- Peng, X.; Ma, X.; Lu, S.; Li, Z. A versatile plant rhabdovirus-based vector for gene silencing, miRNA expression and depletion, and antibody production. Front. Plant Sci. 2021, 11, 627880. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Qian, S.; Zhou, X.; Sun, K.; Chen, X.; Zhou, X.; Jackson, A.O.; Li, Z. Rescue of a plant negative-strand RNA virus from cloned cDNA: Insights into enveloped plant virus movement and morphogenesis. PLoS Pathog. 2015, 11, 1005223. [Google Scholar] [CrossRef]
- Cantó Pastor, A.; Mollá-Morales, A.; Ernst, E.; Dahl, W.; Zhai, J.; Yan, Y.; Meyers, B.; Shanklin, J.; Martienssen, R. Efficient transformation and artificial mi RNA gene silencing in Lemna minor. Plant Biol. 2015, 17, 59–65. [Google Scholar] [CrossRef]
- Jauvion, V.; Elmayan, T.; Vaucheret, H. The conserved RNA trafficking proteins HPR1 and TEX1 are involved in the production of endogenous and exogenous small interfering RNA in Arabidopsis. Plant Cell 2010, 22, 2697–2709. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ding, S.W. Virus counterdefense: Diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 2006, 60, 503–531. [Google Scholar] [CrossRef]
- Brigneti, G.; Voinnet, O.; Li, W.; Ji, L.; Ding, S.; Baulcombe, D.C. Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 1998, 17, 6739–6746. [Google Scholar] [CrossRef] [PubMed]
- Kasschau, K.D.; Xie, Z.; Allen, E.; Llave, C.; Chapman, E.J.; Krizan, K.A.; Carrington, J.C. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 2003, 4, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Moissiard, G.; Voinnet, O. Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 2004, 5, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pendon, J.A.; Ding, S.W. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu. Rev. Microbiol. 2008, 46, 303–326. [Google Scholar] [CrossRef]
- Chiong, K.T.; Cody, W.B.; Scholthof, H.B. RNA silencing suppressor-influenced performance of a virus vector delivering both guide RNA and Cas9 for CRISPR gene editing. Sci. Rep. 2021, 11, 6769. [Google Scholar] [CrossRef] [PubMed]
Virus Name | Target of Infestation | Laboratory Inoculation Method | Viral Insert Fragment | Editing Efficiency | Whether or Not It Has a Heritable Mutation | Reference |
---|---|---|---|---|---|---|
PVX | Solanaceae | Agrobacterium tumefaciens injection infestation | Single gRNA | CRTISO target: 84% PSY1 target: 50–70% | Yes | [54] |
BeYDV | Solanaceae | Agrobacterium tumefaciens injection infestation | Cas9 and single gRNA | SlCRTISO target: 90.4% SlPSY1 target: 56.4% Gene replacement: 25% | Yes | [74] |
ALSV | Leguminosae/Cucurbitaceae | Agrobacterium tumefaciens injection infestation | Single or multiplexed gRNA | GW2: 45.3% | No | [49] |
TSWV | Solanaceae | Mechanically transmitted the vectors from agroinfiltrated N. benthamiana | Cas9 and single gRNA | NtPDS-2: 83.5% SlPDS-2: 73.0% | No | [75] |
CGMMV | Cucurbitaceae | Agrobacterium tumefaciens injection infestation, vacuum infiltration | Single gRNA | Unknown | Unknown | |
TRV | Solanaceae | Agrobacterium tumefaciens injection infestation, vacuum infiltration | Single gRNA | Unknown | Unknown | |
TRSV | Cucurbitaceae | Agrobacterium tumefaciens injection infestation, vacuum infiltration | Single gRNA | Unknown | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cao, S.; Xu, X.; He, Y.; Shou, W.; Munaiz, E.D.; Yu, C.; Shen, J. Application and Expansion of Virus-Induced Gene Silencing for Functional Studies in Vegetables. Horticulturae 2023, 9, 934. https://doi.org/10.3390/horticulturae9080934
Wang Z, Cao S, Xu X, He Y, Shou W, Munaiz ED, Yu C, Shen J. Application and Expansion of Virus-Induced Gene Silencing for Functional Studies in Vegetables. Horticulturae. 2023; 9(8):934. https://doi.org/10.3390/horticulturae9080934
Chicago/Turabian StyleWang, Zheng, Shoujun Cao, Xinyang Xu, Yanjun He, Weisong Shou, Eduardo D. Munaiz, Chao Yu, and Jia Shen. 2023. "Application and Expansion of Virus-Induced Gene Silencing for Functional Studies in Vegetables" Horticulturae 9, no. 8: 934. https://doi.org/10.3390/horticulturae9080934