Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry
Abstract
:1. Introduction
Botanical Description of Kenaf
2. Malaysian Kenaf Cultivation
3. Growth Conditions and Challenges in Soil-Grown Kenaf
4. Solid Culture of Kenaf Plants
5. In Vitro Callus Formation
6. Factors Influencing In Vitro Cultivation of Kenaf
6.1. Type of Media
6.2. Carbon Sources
6.3. Plant Growth Regulators (PGRs)
6.4. Explants, Water, Temperature, pH, Humidity, and Photoperiodism
6.5. Type of Kenaf Variety Used
7. Liquid Culture of Kenaf
8. Types of Bioreactors
9. Challenges, Current Perspectives, and Future Work
9.1. Challenges in the Kenaf Industry
9.2. Current Perspectives of the Kenaf Industry
9.3. Future Work of Kenaf
9.3.1. Kenaf Cultivation in a Bioreactor
9.3.2. Optimization of Nitrogen Source on the In Vitro Growth of Kenaf
9.3.3. Optimization of Production Yield of Kenaf Biomass Using Various Types of Kenaf Varieties
9.3.4. Production of Functional Food for Humans and Animal Feed
9.3.5. Phytoremediation of Heavy Metal Using Kenaf
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinrotimi, C.; Okocha, P. Evaluations of genetic divergence in Kenaf (Hibiscus cannabinus L.) genotypes using agro-morphological characteristics. J. Plant Sci. Agric. Res. 2018, 2, 2167-0412. [Google Scholar]
- Corinzia, S.A.; Scordia, D.; D’Agosta, G.; Cosentino, S.L.; Patanè, C. LAI and biomass of kenaf as affected by sowing time and plant density: A simple model simulates the time course in a Mediterranean environment. Ind. Crops Prod. 2022, 184, 114995. [Google Scholar] [CrossRef]
- Hui, L.; Li, C.; Huijuan, T.; Mingbao, L.; Gen, P.; Siqi, H.; Hui, J.; Yena, W.; Anguo, C. High-resolution genetic map construction and QTL analysis of important fiber traits in kenaf using RAD-seq. S. Afr. J. Bot. 2021, 153, 46–52. [Google Scholar] [CrossRef]
- Adnan, M.; Oh, K.K.; Azad, M.O.K.; Shin, M.H.; Wang, M.H.; Cho, D.H. Kenaf (Hibiscus cannabinus L.) Leaves and Seed as a Potential Source of the Bioactive Compounds: Effects of Various Extraction Solvents on Biological Properties. Life 2020, 10, 223. [Google Scholar] [CrossRef]
- Rekaya, A.; Hanana, M.; Mzid, R.; Hamrouni, L.; Khouja, M.L.; Hanachi, A. Hibiscus cannabinus L.—Kenaf: A Review Paper. J. Nat. Fibers 2016, 14, 1–19. [Google Scholar] [CrossRef]
- Abu Hassan, N.A.; Ahmad, S.; Chen, R.S.; Shahdan, D.; Haafiz, M. Tailoring lightweight, mechanical and thermal performance of PLA/recycled HDPE biocomposite foams reinforced with kenaf fibre. Ind. Crops Prod. 2023, 197, 116632. [Google Scholar] [CrossRef]
- Arjmandi, R.; Yıldırım, I.; Hatton, F.; Hassan, A.; Jefferies, C.; Mohamad, Z.; Othman, N. Kenaf fibers reinforced unsaturated polyester composites: A review. J. Eng. Fibers Fabr. 2021, 16, 1–22. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Papatheohari, Y.; Myrsini, C.; Monti, A. Origin, Description, Importance, and Cultivation Area of Kenaf. Green Energy Technol. 2013, 117, 1–15. [Google Scholar] [CrossRef]
- Nie, K.; Liu, B.; Zhao, T.; Wang, H.; Song, Y.; Ben, H.; Ragauskas, A.J.; Han, G.; Jiang, W. A facile degumming method of kenaf fibers using deep eutectic solution. Ind. Crops Prod. 2023, 19, 1115–1125. [Google Scholar] [CrossRef]
- Nasreen, S.; Salim, M.; Paul, S. Effect of Variety and Seed Rate on the Yield of Kenaf. Int. J. Sustain. Crop Prod. 2014, 9, 23–28. [Google Scholar]
- Yan Yi, S. Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Ind. Crops Prod. 2021, 167, 113491. [Google Scholar] [CrossRef]
- Klaus, A.; Wan-Mohtar, W.A.A.Q.I. Cultivation Strategies of Edible and Medicinal Mushrooms in Wild Mushrooms; CRC Press: London, UK, 2022. [Google Scholar]
- Mohd Zaini, N.A.; Azizan, N.A.Z.; Abd Rahim, M.H.; Jamaludin, A.A.; Raposo, A.; Raseetha, S.; Zandonadi, R.P.; BinMowyna, M.N.; Raheem, D.; Lho, L.H.; et al. A narrative action on the battle against hunger using mushroom, peanut, and soybean-based wastes. Front. Public Health 2023, 11, 1175509. [Google Scholar] [CrossRef] [PubMed]
- Wan Mohtar, W.H.M.; Wan-Mohtar, W.A.A.Q.I.; Zahuri, A.A.; Ibrahim, M.F.; Show, P.-L.; Ilham, Z.; Jamaludin, A.A.; Abdul Patah, M.F.; Ahmad Usuldin, S.R.; Rowan, N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: A review. Bioengineered 2022, 13, 14903–14935. [Google Scholar] [CrossRef] [PubMed]
- Supramani, S.; Rejab, N.A.; Ilham, Z.; Wan-Mohtar, W.A.A.Q.I.; Ghosh, S. Basal stem rot of oil palm incited by Ganoderma species: A review. Eur. J. Plant Pathol. 2022, 164, 1–20. [Google Scholar] [CrossRef]
- Hassan, F.; Zulkifli, R.; Ghazali, M.; Azhari, C. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 315. [Google Scholar] [CrossRef]
- Tholibon, D.; Tharazi, I.; Sulong, A.B.; Muhamad, N.; Ismial, N.; Radzi, M.; Radzuan, N.M.; Hui, D. Kenaf fiber composites: A review on synthetic and biodegradable polymer matrix. J. Kejuruter 2019, 31, 65. [Google Scholar] [CrossRef]
- Karim, R.; Noh, N.A.M.; Ibadullah, W.Z.W.; Zawawi, N.; Saari, N. Kenaf (Hibiscus cannabinus L.) seed extract as a new plant-based milk alternative and its potential food uses. In Milk Substitutes-Selected Aspects; IntechOpen: London, UK, 2020. [Google Scholar]
- Sim, Y.Y.; Nyam, K.L. Hibiscus cannabinus L.(kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications. Food Chem. 2021, 344, 128582. [Google Scholar] [CrossRef]
- Al-Snafi, A. Pharmacological Effects and Therapeutic Properties of Hibiscus Cannabinus L, A Review. Indo Am. J. Pharm. Sci. 2018, 5, 2176–2182. [Google Scholar] [CrossRef]
- Islam, M. Kenaf (Hibiscus cannabinus L., Malvaceae) Research and Development Advances in Bangladesh: A. Nutr. Food Process. 2019, 2. [Google Scholar] [CrossRef]
- Afzal, M.; Ibrahim, A.; Xu, Y.; Niyitanga, S.; Li, Y.; Li, D.; Yang, X.; Zhang, L. Kenaf (Hibiscus cannabinus L.) Breeding. J. Nat. Fibers 2020, 19, 4063–4081. [Google Scholar] [CrossRef]
- Samanthi, P.W.; Mohd Puad, A.; Suhaimi, N.; Kumar, S.M.; Nor Aini, A.S. In Vitro Studies on Callus Induction of Kenaf (Hibiscus cannabinus L.). Int. J. Microbiol. Appl. 2016, 3, 1–5. [Google Scholar]
- Adebisi, M.; Esuruoso, O.; Adetumbi, J.; Abdul-Rafiu, A.; Kehinde, T.; Ajani, O.; Agboola, D. Shelf life of Kenaf (Hibiscus cannabinus L.) seed stored under humid tropical conditions. Plant Breed. Seed Sci. 2014, 67, 75. [Google Scholar] [CrossRef] [Green Version]
- Kujoana, T.C.; Weeks, W.J.; Van der Westhuizen, M.M.; Mabelebele, M.; Sebola, N.A. Potential significance of kenaf (Hibiscus cannabinus L.) to global food and feed industries. Cogent Food Agric. 2023, 9, 2184014. [Google Scholar] [CrossRef]
- Xu, J.; Tao, A.; Qi, J.; Wang, Y. Bast fibres: Kenaf. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–92. [Google Scholar]
- Millogo, Y.; Aubert, J.-E.; Hamard, E.; Morel, J.-C. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks. Materials 2015, 8, 2332–2345. [Google Scholar] [CrossRef]
- Giwa Ibrahim, S.a.; Karim, R.; Saari, N.; Wan Abdullah, W.Z.; Zawawi, N.; Ab Razak, A.F.; Hamim, N.A.; Umar, R.U.A. Kenaf (Hibiscus cannabinus L.) seed and its potential food applications: A review. J. Food Sci. 2019, 84, 2015–2023. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, D.-H.; Irshad, M.; He, B.; Liu, S.; Lu, X.; Sun, Y.; Qiu, D. Role of reduced nitrogen for induction of embryogenic callus induction and regeneration of plantlets in Abelmoschus esculentus L. S. Afr. J. Bot. 2020, 130, 300–307. [Google Scholar] [CrossRef]
- Yunita, R.; Bagus, F.; Nova, B.; Rosadi, F.; Jamsari, A. Optimization of growth regulators to induce callus in chili [Capsicum annuum] cv. Berangkai. IOP Conf. Ser. Earth Environ. Sci. 2021, 741, 012047. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Rafii, M.Y.; Misran, A.B.; Berahim, Z.; Ahmad, Z.; Khan, M.M.H.; Oladosu, Y. Combining ability and gene action for yield improvement in kenaf (Hibiscus cannabinus L.) under tropical conditions through diallel mating design. Sci. Rep. 2022, 12, 9646. [Google Scholar] [CrossRef]
- Marole, T.; Ligavha-Mbelengwa, M. The distribution, abundance and impact of the alien invasive species Hibiscus cannabinus following disturbance by fire of low intensity. S. Afr. J. Bot. 2016, 100, 328. [Google Scholar] [CrossRef]
- Noor, M.; Ismail, T.; Shahid, S.; Nashwan, M.; Ullah, S. Development of multi-model ensemble for projection of extreme rainfall events in Peninsular Malaysia. Hydrol. Res. 2019, 50, 1772–1788. [Google Scholar] [CrossRef] [Green Version]
- Zainuddin, Z.; Pauzi, N.S.M.; Bahari, N.A.S. Establishment of in vitro Propagation of Hibiscus cannabinus L.(Kenaf). Sci. Herit. J. (GWS) 2021, 5, 5–7. [Google Scholar]
- Mohammed, H. Cost Benefit Analysis of Kenaf Cultivation for Producing Fiber in Malaysia. Arab. J. Bus. Manag. Rev. 2017, 7, 1–4. [Google Scholar]
- Mohd, H.; Arifin, A.; Nasima, J.; Hazandy, A.H.; Khalil, A. Journey of kenaf in Malaysia: A review. Sci. Res. Essays 2014, 9, 458–470. [Google Scholar] [CrossRef]
- Debnath, S.C.; Arigundam, U. In Vitro Propagation Strategies of Medicinally Important Berry Crop, Lingonberry (Vaccinium vitis-idaea L.). Agronomy 2020, 10, 744. [Google Scholar] [CrossRef]
- Verma, V.; Zinta, G.; Kanwar, K. Optimization of efficient direct organogenesis protocol for Punica granatum L. cv. Kandhari Kabuli from mature leaf explants. In Vitro Cell. Dev. Biol. -Plant 2021, 57, 48–59. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; Khalid, F.; Ellahi, M.; Iqbal, S.; Hassan, M.Z.; Abbas, A.; Adamski, R.; Markowska, D.; et al. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front. Plant Sci. 2022, 13, 1009395. [Google Scholar] [CrossRef]
- Benzle, K.; Cornish, K. Improved axenic hydroponic whole plant propagation for rapid production of roots as transformation target tissue. Plant Methods 2017, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Weng, J.; Zhang, X.; Liu, C.; Yong, H.; Hao, Z.; Li, X. Genome-wide association analysis of kernel row number in maize. Acta Agron. Sin. 2014, 40, 1–6. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant Callus: Mechanisms of Induction and Repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Kwon, S.-J.; Kim, D.-G.; Lee, M.-K.; Kim, J.; Jo, Y.; Kim, S.; Jeong, S.; Kyung-yun, K.; Kim, S.; et al. Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes. J. Plant Biotechnol. 2017, 44, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Samanthi, P.; Puad, A.M.; Suhaimi, N.; Kumar, S.; Aini, A. In vitro shoot regeneration from leaf explants of kenaf (Hibiscus cannabinus L.). Sains Malays. 2013, 42, 1505–1510. [Google Scholar]
- Odahara, M.; Horii, Y.; Kimura, M.; Numata, K. Efficient callus induction and a temperature condition for flowering and seed setting in kenaf Hibiscus cannabinus. Plant Biotechnol. 2020, 37, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, B.; Asanakunov, B.; Shahin, L.; Jernigan, H.; Joshee, N.; Dhekney, S.A. Improving micropropagation of Mentha × piperita L. using a liquid culture system. Vitr. Cell. Dev. Biol. -Plant 2019, 55, 71–80. [Google Scholar] [CrossRef]
- Sinclair, J.W.; Byrne, D.H. Improvement of peach embryo culture through manipulation of carbohydrate source and pH. HortScience 2003, 38, 582–585. [Google Scholar] [CrossRef]
- Kamal, I.B. Kenaf for biocomposite: An overview. J. Sci. Technol. 2014, 6. [Google Scholar]
- Norhisham, D.A.; Saad, N.M.; Ahmad Usuldin, S.R.; Vayabari, D.A.G.; Ilham, Z.; Ibrahim, M.F.; Wan-Mohtar, W.A.A.Q.I. Bioactivities of Kenaf Biomass Extracts: A Review. Processes 2023, 11, 1178. [Google Scholar] [CrossRef]
- Ibraheem, Y.; Pinker, I.; Böhme, M. A comparative study between solid and liquid cultures relative to callus growth and somatic embryo formation in Phoenix dactylifera L. cv. Zaghlool. Emir. J. Food Agric. 2013, 25, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, M.; Eibl, R.; Zhong, J.-J. Hosting the plant cells in vitro: Recent trends in bioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 3787–3800. [Google Scholar] [CrossRef]
- Kho, K.; Sim, Y.Y.; Nyam, K.L. Antioxidant activities of tea prepared from kenaf (Hibiscus cannabinus L. KR9) leaves at different maturity stages. J. Food Meas. Charact. 2019, 13, 2009–2016. [Google Scholar] [CrossRef]
- Shukla, M.R.; Piunno, K.; Saxena, P.K.; Jones, A.M.P. Improved in vitro rooting in liquid culture using a two piece scaffold system. Eng. Life Sci. 2020, 20, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Miguel, S.; Michel, C.; Biteau, F.; Hehn, A.; Bourgaud, F. In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Sci. Rep. 2020, 10, 17482. [Google Scholar] [CrossRef]
- Anfinrud, R.; Cihacek, L.; Johnson, B.; Ji, Y.; Berti, M. Sorghum and kenaf biomass yield and quality response to nitrogen fertilization in the Northern Great Plains of the USA. Ind. Crops Prod. 2013, 50, 159–165. [Google Scholar] [CrossRef]
- Tan, Y.L.; Yong, C.Y.; Dorotheo, E.U.; Assunta, M. Kenaf Malays. 2017. Available online: https://unfairtobacco.org/en/material/case-study-kenaf-in-malaysia/#/ (accessed on 20 January 2023).
- Wan-Mohtar, W.A.A.Q.I.; Ilham, Z.; Rowan, N.J. Editorial: “The value of microbial bioreactors to meet challenges in the circular bioeconomy”. Front. Bioeng. Biotechnol. 2023, 11, 1181822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef]
- Arbaoui, S.; Evlard, A.; Mhamdi, M.E.W.; Campanella, B.; Paul, R.; Bettaieb, T. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation 2013, 24, 563–567. [Google Scholar] [CrossRef]
- Li, W.; Jin, G.; Luo, X.; An, X.; Li, P.; Zhu, G.; Chen, C. Comparative study on the potential of a kenaf (Hibiscus cannabinus) variety for remediating heavy metal contaminated soils. J. Agro-Environ. Sci. 2018, 37, 2150–2158. [Google Scholar]
- Muhammad, K.S.; Ismail, M.; Zawawi, N. Nutritional Composition, Techno-functional properties and sensory analysis of pan bread fortified with kenaf seeds dietary fibre. J. Sains Malays. 2021, 50, 3285–3296. [Google Scholar]
Part of the Kenaf (Hibiscus cannabinus L.) Plant | Description | Reference |
---|---|---|
Calyx | The calyx is lanceolate and bell-shaped with a tapering point to sub-caudate lobes 1–2.5 cm long; the sepals of the flower are green, bristled, and covered in tomentose, with each sepal bearing a large green gland on its back. The sepals are horn-shaped, with a cap below the middle. | [20,21] |
Carpels | The oviform style of the flower is superior and consists of five cells. It branches into three to five hairy arms, each measuring 2 to 4 mm long, and concludes in a capitate stigma at the end of each branch. | [20,21] |
Capsule | Ovoid, pointy, and villose, with 20 to 26 seeds; the calyx is twice the size of the capsule | [21] |
Corolla | Large, spreading, campanulate, and yellow with or without deep enter in 5 petals. | [21,27] |
Epicalyx | It has 7–8 linear segments which are 7–18 mm long and persistent. | [20] |
Flower | Axillary, bell-shaped, monoecious, and solitary; sometimes clustered adjacent to the plant apex with a diameter from 8 to 15 cm in white, yellow, or purple; either white or yellow with a dark purple centre. | [20,23,28,29,30] |
Fruit | A 2 cm diameter capsule, with numerous shortly beaked seeds 12–20 mm × 11–15 mm. | [6,19,30] |
Lamina | The lamina/blade of the leaves is 1–19 cm × 0.1–20 cm whereas the lower part of the plant is 3–7-lobed. The upper section of the lamina is typically without lobes or resembling bracts near the tip, while its base ranges from cuneate to cordate in shape. The apex is pointed, with serrated or toothed edges. Although the upper surface is smooth, it features a noticeable 3 mm long nectary at the midrib’s base. The underside has hair along the veins. | [20,21] |
Leaves | They have an entire (unlobed) or palmatifid (divided/lobed) shape which ranges from 10 to 15 cm long with filiform stipules, 5–8 mm long pubescent, and a petiole which is about 3–30 cm long. | [20,23,28,29,30] |
Pedicel | Articulated at the base; the length of the structure ranges from 2 to 6 mm. | [6] |
Root | The wide lateral roots and long taproot of kenaf enable it to have a profusion of roots, making it more sensitive to changes in soil moisture and the uptake of deep soil water. | [5,23,29,30] |
Seed | Triangular (common) or sub-reniform, 3–4 mm × 2–3 mm, a mixture of grey and brown-black, displaying light yellowish spots, while the hilum is brown; glabrous; hairy with five segments. | [5,21,31] |
Stalk | Contains bast fibre (30 of dry weight), core (70 of dry weight), and pith. | [5] |
Stamen | A cluster of filaments is fused together to form a column that encircles the style, measuring 17–23 mm in length. The filaments are dark red in colour, and the anthers are either yellow or red. | [20,30] |
Stem | It has straight, single, and branchless stems which are round with thorns; stem colour ranges from green to deep burgundy; grows up to 1 to 2 m in length and 1 to 2 cm in diameter. | [28,29,30,32] |
Fibre and Core (Hectare) | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|
Pahang | 706.00 | 829.00 | 693.90 | 320.50 | 422.00 | 562.50 | 598.00 | 649.00 |
Kelantan | 634.20 | 715.00 | 842.58 | 392.50 | 507.30 | 393.50 | 242.04 | 165.41 |
Terengganu | 510.30 | 433.00 | 666.30 | 299.20 | 325.10 | 342.00 | 342.20 | 177.50 |
Perak | 125.30 | 131.00 | 50.00 | 7.00 | 10.00 | 8.00 | 11.80 | 23.00 |
Penang | 20.00 | 25.00 | 15.00 | - | - | - | - | - |
Selangor | 4.80 | 3.00 | - | - | - | - | - | - |
N.Sembilan | - | - | - | - | - | - | - | - |
Johor | - | 50.00 | 70.00 | 15.00 | 10.00 | 4.00 | 21.50 | 2.00 |
Kedah | - | 25.00 | 55.00 | 363.00 | 16.00 | 5.00 | 5.60 | 10.60 |
Perlis | - | 50.00 | 110.00 | 35.00 | 113.00 | 36.00 | 40.00 | 25.00 |
Melaka | - | 13.00 | - | - | 5.00 | 13.00 | 9.70 | 4.00 |
SubTotal | 2000.60 | 2274.00 | 2502.78 | 1432.20 | 1408.40 | 1364.00 | 1270.84 | 1057.51 |
Seed (Hectare) | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
Kedah | 275.00 | 275.00 | 141.20 | 135.00 | 145.00 | 107.10 | 123.70 | 279.38 |
Perlis | 120.00 | 256.00 | 462.60 | 646.00 | 470.00 | 235.00 | 211.10 | 207.70 |
Kelantan | - | - | - | - | 10.00 | - | - | |
Pahang | - | - | - | - | 30.00 | 18.00 | 20.00 | |
Terengganu | - | - | - | - | 5.00 | - | - | |
Perak | - | - | - | - | - | 6.00 | - | |
Sub Total | 395.00 | 531.00 | 603.80 | 781.00 | 660.00 | 366.10 | 354.80 | 487.08 |
Total | 2395.60 | 2805.00 | 3106.58 | 2213.20 | 2068.40 | 1730.10 | 1625.64 | 1544.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vayabari, D.A.G.; Ilham, Z.; Md Saad, N.; Usuldin, S.R.A.; Norhisham, D.A.; Abd Rahim, M.H.; Wan-Mohtar, W.A.A.Q.I. Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry. Horticulturae 2023, 9, 925. https://doi.org/10.3390/horticulturae9080925
Vayabari DAG, Ilham Z, Md Saad N, Usuldin SRA, Norhisham DA, Abd Rahim MH, Wan-Mohtar WAAQI. Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry. Horticulturae. 2023; 9(8):925. https://doi.org/10.3390/horticulturae9080925
Chicago/Turabian StyleVayabari, Diwiyaa A. G., Zul Ilham, Norsharina Md Saad, Siti Rokhiyah Ahmad Usuldin, Danial’ Aizat Norhisham, Muhamad Hafiz Abd Rahim, and Wan Abd Al Qadr Imad Wan-Mohtar. 2023. "Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry" Horticulturae 9, no. 8: 925. https://doi.org/10.3390/horticulturae9080925
APA StyleVayabari, D. A. G., Ilham, Z., Md Saad, N., Usuldin, S. R. A., Norhisham, D. A., Abd Rahim, M. H., & Wan-Mohtar, W. A. A. Q. I. (2023). Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry. Horticulturae, 9(8), 925. https://doi.org/10.3390/horticulturae9080925