Construction of a Tomato (Solanum lycopersicum L.) Introgression Line Population and Mapping of Major Agronomic Quantitative Trait Loci
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. Molecular Marker Screening and IL Population Construction
2.3. Linkage Map Construction and QTL Mapping
2.4. Agronomic Trait Investigation and Statistical Analysis
3. Results
3.1. Polymorphic DNA Marker Screening
3.2. IL Population Construction and Linkage Map
3.3. QTL Identification of the Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peralta, I.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sections lycopersicoides, Juglandilolia, Lycopersicon; Solanaceae). Syst. Bot. Monogr. 2008, 84, 1–186. [Google Scholar]
- Donald, C.M. The breeding of crop ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Qiu, S.L. Construction of Solanum Pennellii LA0716, Introgression Lines and Mapping of Related Agronomic Traits. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2012. [Google Scholar]
- Rothan, C.; Diouf, I.; Causse, M. Trait discovery and editing in tomato. Plant J. 2019, 97, 73–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanksley, S.D.; Young, N.D.; Paterson, A.H.; Bonierbale, M.W. RFLP mapping in plant breeding: New tools for an old science. Nat. Biotechnol. 1989, 7, 257–264. [Google Scholar] [CrossRef]
- Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993, 262, 1432–1436. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 1994, 79, 175–179. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar] [CrossRef]
- Frary, A.; Nesbitt, T.C.; Grandillo, S.; Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; Tanksley, S.D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Fulton, T.M.; Chunwongse, J.; Tanksley, S.D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 1995, 13, 207–209. [Google Scholar] [CrossRef]
- Boiteux, L.S.; Fonseca, M.E.N.; Simon, P.W. Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. J. Am. Soc. Hortic. Sci. 1999, 124, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Fulton, T.; van der Hoeven, R.; Eannetta, N.; Tanksley, S. Identification, analysis and utilization of conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 2002, 14, 1457–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reflinur; Kim, B.; Jang, S.M.; Chu, S.H.; Bordiya, Y.; Akter, M.B.; Lee, J.; Chin, J.H.; Koh, H.J. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 2014, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- van Berloo, R. GGT 2.0: Versatile software for visualization and analysis of genetic data. J. Hered. 2008, 99, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Young, N.D.; Tanksley, S.D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor. Appl. Genet. 1989, 77, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Teng, Z.; Zhai, T.; Fang, X.; Liu, F.; Liu, D.; Zhang, J.; Liu, D.; Wang, S.; Zhang, K.; et al. Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 2014, 201, 195–213. [Google Scholar] [CrossRef]
- Zhou, H. Identification of the Genetic Loci for Tomato Fruit, Plant Morphology and Fertility Using a Solanum Pennellii Introgression Line Population. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2015. [Google Scholar]
- Robertson, D.R.; Victor, B.C.; Helfman, G.S.; Schultz, E.T.; Warner, R.R.; Searcy, W.A.; Pleszczynska, W.K.; Hansell, R.I.C.; Lili, A.; Hollman, S.G.Z. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 1988, 335, 20. [Google Scholar]
- Grandillo, S.; Tanksley, S.D. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 1996, 92, 935–951. [Google Scholar] [CrossRef]
- Prudent, M.; Causse, M.; Genard, M.; Tripodi, P.; Grandillo, S.; Bertin, N. Genetic and physiological analysis of tomato fruit weight and composition: Influence of carbon availability on QTL detection. J. Exp. Bot. 2009, 60, 923–937. [Google Scholar] [CrossRef] [Green Version]
- Holtan, H.E.; Hake, S. Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 2003, 165, 1541–1550. [Google Scholar] [CrossRef]
- Kachanovsky, D.E.; Filler, S.; Isaacson, T.; Hirschberg, J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc. Natl. Acad. Sci. USA 2012, 109, 19021–19026. [Google Scholar] [CrossRef]
- Grandillo, S.; Ku, H.M.; Tanksley, S.D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 1999, 99, 978–987. [Google Scholar] [CrossRef]
- Tanksley, S.D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 2004, 16, S181–S189. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Zhang, N.; Sauvage, C.; Muños, S.; Blanca, J.; Cañizares, J.; Diez, M.J.; Schneider, R.; Mazourek, M.; McClead, J.; et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc. Natl. Acad. Sci. USA 2013, 110, 17125–17130. [Google Scholar] [CrossRef] [PubMed]
- Lippman, Z.; Tanksley, S.D. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 2001, 158, 413–422. [Google Scholar] [CrossRef]
- Labate, J.A.; Grandillo, S.; Fulton, T.; Muños, S.; Caicedo, A.L.; Peralta, I.; Ji, Y.; Chetelat, R.T.; Scott, J.W.; Gonzalo, M.J.; et al. Tomato. In Vegetables; Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar] [CrossRef]
- Fridman, E.; Pleban, T.; Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 2000, 97, 4718–4723. [Google Scholar] [CrossRef]
- Fridman, E.; Carrari, F.; Liu, Y.S.; Fernie, A.R.; Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 2004, 305, 1786–1789. [Google Scholar] [CrossRef]
- Cui, L.; Qiu, Z.; Wang, Z.; Gao, J.; Guo, Y.; Huang, Z.; Du, Y.; Wang, X. Fine mapping of a gene (ER4.1) that causes epidermal reticulation of tomato fruit and characterization of the associated transcriptome. Front. Plant Sci. 2017, 8, 1254. [Google Scholar] [CrossRef] [Green Version]
- Monforte, A.; Friedman, E.; Zamir, D.; Tanksley, S.D. Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theor. Appl. Genet. 2001, 102, 572–590. [Google Scholar] [CrossRef]
- Yeats, T.H.; Huang, W.; Chatterjee, S.; Viart, H.M.; Clausen, M.H.; Stark, R.E.; Rose, J.K. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J. 2014, 77, 667–675. [Google Scholar] [CrossRef]
Chromosome No. | Number of Polymorphic Markers | Number of Selected Tracking Markers | Chromosome Length (cm) | Average Map Distance of Adjacent Markers (cm) |
---|---|---|---|---|
1 | 40 | 24 | 165 | 6.9 |
2 | 44 | 20 | 143 | 7.2 |
3 | 78 | 23 | 171 | 7.4 |
4 | 58 | 16 | 137 | 8.6 |
5 | 33 | 19 | 119 | 6.3 |
6 | 22 | 15 | 101 | 6.7 |
7 | 25 | 16 | 112 | 7.0 |
8 | 21 | 13 | 87 | 6.7 |
9 | 33 | 13 | 114 | 8.8 |
10 | 27 | 14 | 86 | 6.1 |
11 | 22 | 15 | 103 | 6.9 |
12 | 49 | 12 | 120 | 10.0 |
Total | 452 | 200 | 1458 | 7.3 |
Backcrossing Generation 2 | Number of Selected DNA Markers | Number of Markers That Exhibited Segregation Distortion 1 | Percentage of Segregation Distortion (%) | |
---|---|---|---|---|
p < 0.05 | p < 0.01 | |||
BC1 | 272 | 0 | 0 | - |
BC2 | 192 | 9 | 1 | 5.2 |
BC3 | 182 | 14 | 6 | 11.0 |
BC4 | 200 | 12 | 6 | 8.0 |
BC5 | 200 | 18 | 6 | 12.0 |
DNA Marker | Chromosome | Genetic Distance (cm) | Physical Location on Chromosome | Segregation Distortion Generation 1 | Skewed Direction |
---|---|---|---|---|---|
C2_At4g20410 | 2 | 36.9 | q arm | BC3, BC4, BC5 | bidirectional |
SSR5 | 2 | 53.0 | q arm | BC3, BC4, BC5 | towards the recurrent parent |
C2_At5g23880 | 3 | 53.5 | around the centromere | BC3, BC4, BC5 | towards the recurrent parent |
C2_At5g62530 | 6 | 55.5 | q arm | BC3, BC5 | bidirectional |
U221657 | 8 | 13.0 | around the centromere | BC2, BC3 | bidirectional |
C2_At4g23840 | 8 | 82.0 | q arm | BC4, BC5 | towards the recurrent parent |
TG294 | 8 | 87.0 | q arm | BC2, BC4 | towards the recurrent parent |
C2_At5g19690 | 12 | 27.0 | q arm | BC3, BC4, BC5 | towards the recurrent parent |
C2_At4g18593 | 12 | 59.0 | p arm | BC3, BC4 | towards the recurrent parent |
Chromosome No. | Number of Candidate Plants in BC5 Population 1 | Number of Introgression Segments from the Donor | Number of Introgression Segments Selected to Construct the IL Population | Average Map Distance of Adjacent Markers (cm) | |||
---|---|---|---|---|---|---|---|
Total | Average | Maximum | Minimum | ||||
1 | 65 | 17 | 13 | 317.5 | 24.4 | 47.05 | 4.9 |
2 | 55 | 15 | 10 | 272.2 | 27.2 | 61.1 | 16.2 |
3 | 65 | 21 | 11 | 421.2 | 38.3 | 50.7 | 17.25 |
4 | 39 | 12 | 9 | 355.3 | 39.5 | 59.65 | 7.5 |
5 | 48 | 12 | 7 | 251.0 | 35.9 | 72.75 | 12.0 |
6 | 42 | 10 | 7 | 232.0 | 33.1 | 49.75 | 14.25 |
7 | 44 | 16 | 9 | 268.7 | 29.9 | 61.25 | 16.3 |
8 | 36 | 10 | 8 | 185.7 | 23.2 | 35.75 | 8.5 |
9 | 36 | 9 | 9 | 349.5 | 38.8 | 83.5 | 15.25 |
10 | 36 | 9 | 9 | 215.0 | 23.9 | 36.45 | 8.0 |
11 | 39 | 10 | 6 | 174.3 | 29.1 | 57.35 | 15.5 |
12 | 36 | 10 | 9 | 326.0 | 36.2 | 56.75 | 11.75 |
Total | 541 | 151 | 107 | 3368.4 | 31.5 | 72.75 | 4.9 |
Agronomic Trait 1 | QTL | Chromosome | Physical Position | Marker Upstream | Marker Downstream | Molecular/Physiological Role | p-Value 2 |
---|---|---|---|---|---|---|---|
PH | qPH2a | 2 | SL2.50ch02:0..37,699,910 | C2_At5g37260 | SSR40 | decreased PH by 15–27% | 0.042 |
qPH3a | 3 | SL2.50ch03:61,948,912..65933054 | C2_At1g05330 | C2_At1g52590 | decreased PH by 17–25% | <0.001 | |
qPH7a | 7 | SL2.50ch07:65,185,067..67,592,440 | C2_At3g14910 | C2_At5g56130 | increase PH by 12–24% | 0.001 | |
LS | qLS12a | 12 | SL2.50ch12:5,277,091..63,005,148 | C2_At5g42740 | T0801 | larger LS | <0.001 |
FC | qFC3a | 3 | SL2.50ch03:3,464,378..3,465,245 | T1388 | cLPT-2-E21 | yellow fruit | <0.001 |
FW | qFW1a | 1 | SL2.50ch01:79,707,633..87,866,313 | C2_At4g15520 | U223116 | decrease FW by 18–30% | 0.01 |
qFW2a | 2 | SL2.50ch02:50,645,729..52,761,764 | T1480 | U153274 | decrease FW by 23–50% | 0.01 | |
qFW3a | 3 | SL2.50ch03:1,755,716..16,135,852 | TG130 | T1388 | decrease FW by 12–28% | 0.016 | |
qFW3b | 3 | SL2.50ch03:59,592,414..67,546,853 | C2_At3g12490 | C2_At3g17970 | decrease FW by 24–27% | 0.023 | |
SSC | qSSC7a | 7 | SL2.50ch07:66,922,790 | C2_At4g26750 | - | increase SSC by 16–33% | 0.008 |
qSSC9a | 9 | SL2.50ch09:1,916,815..3,791,130 | C2_At2g32600 | C2_At2g37500 | increase SSC by 22–30% | <0.001 | |
ER | qER4a | 4 | SL2.50ch04:62,469,833.. 65,801,303 | SSR214 | C2_At1g76080 | corky and reticulated epidermis | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Qiu, S.; Zhou, H.; Gao, W.; Cui, L.; Qiu, Z.; Dong, C.; Wang, X. Construction of a Tomato (Solanum lycopersicum L.) Introgression Line Population and Mapping of Major Agronomic Quantitative Trait Loci. Horticulturae 2023, 9, 823. https://doi.org/10.3390/horticulturae9070823
Chen Y, Qiu S, Zhou H, Gao W, Cui L, Qiu Z, Dong C, Wang X. Construction of a Tomato (Solanum lycopersicum L.) Introgression Line Population and Mapping of Major Agronomic Quantitative Trait Loci. Horticulturae. 2023; 9(7):823. https://doi.org/10.3390/horticulturae9070823
Chicago/Turabian StyleChen, Yifan, Shuliang Qiu, Hui Zhou, Wenzheng Gao, Lipeng Cui, Zhuoyao Qiu, Chenchen Dong, and Xiaoxuan Wang. 2023. "Construction of a Tomato (Solanum lycopersicum L.) Introgression Line Population and Mapping of Major Agronomic Quantitative Trait Loci" Horticulturae 9, no. 7: 823. https://doi.org/10.3390/horticulturae9070823
APA StyleChen, Y., Qiu, S., Zhou, H., Gao, W., Cui, L., Qiu, Z., Dong, C., & Wang, X. (2023). Construction of a Tomato (Solanum lycopersicum L.) Introgression Line Population and Mapping of Major Agronomic Quantitative Trait Loci. Horticulturae, 9(7), 823. https://doi.org/10.3390/horticulturae9070823