Comparative Analyses of Superoxide Dismutase (SOD) Gene Family and Expression Profiling under Multiple Abiotic Stresses in Water Lilies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of SOD Gene Family in Water Lily Species
2.2. Analysis of Physicochemical Features and Subcellular Localization
2.3. Phylogenetic Analysis and Conserved Motifs
2.4. Prediction of the Cis-Regulatory Elements in the Promoter
2.5. Examination of the 3D Structures of Water Lily SOD Proteins
2.6. Analysis of SOD Gene Structure of Water Lily
2.7. Analysis of Potential Protein Interaction
2.8. Expression Profiling of NcSOD Genes in Pollen and Ovule
2.9. Plant Materials and Abiotic Stresses
2.10. RNA Isolation and Real-Time Quantitative PCR Expression Analysis
3. Results
3.1. Genome-Wide Analysis of SOD Gene Family in Four Water Lily Species
3.2. Phylogenetic Relationships and Conserved Motif Analysis in Representative Water Lily Species
3.3. Analyses of Cis-Elements in Water Lily SOD Gene Promoters
3.4. 3D Structure Analysis of Water Lily SOD Proteins
3.5. Analysis of Exon-Intron Structure of NcSOD
3.6. Expression Examination of NcSOD Genes in Reproductive Organs
3.7. Potential NcSOD Protein–Protein Interaction
3.8. Real-Time Quantitative PCR (RT-qPCR) Analysis of NcSOD Genes under Abiotic Stresses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittler, R.; Blumwald, E. Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Lee, S.-H.; Ahsan, N.; Lee, K.-W.; Kim, D.-H.; Lee, D.-G.; Kwak, S.-S.; Kwon, S.-Y.; Kim, T.-H.; Lee, B.-H. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 2007, 164, 1626–1638. [Google Scholar] [CrossRef]
- Karuppanapandian, T.; Wang, H.W.; Prabakaran, N.; Jeyalakshmi, K.; Kwon, M.; Manoharan, K.; Kim, W. 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol. Biochem. 2011, 49, 168–177. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Umar, S.; Sharma, S. Mechanism of Free Radical Scavenging and Role of Phytohormones in Plants Under Abiotic Stresses. Plant Adapt. Phytoremediation 2010, 99–118. [Google Scholar] [CrossRef]
- Bafana, A.; Dutt, S.; Kumar, S.; Ahuja, P.S. Superoxide dismutase: An industrial perspective. Crit. Rev. Biotechnol. 2011, 31, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Filiz, E.; Tombuloğlu, H. Genome-Wide Distribution of Superoxide Dismutase (SOD) Gene Families in Sorghum Bicolor. Turkish J. Biol. 2015, 39, 49–59. [Google Scholar] [CrossRef]
- Hodgson, E.K.; Fridovich, I. Reversal of the superoxide dismutase reaction. Biochem. Biophys. Res. Commun. 1973, 54, 270–274. [Google Scholar] [CrossRef]
- Brawn, K.; Fridovich, I. Superoxide Radical and Superoxide Dismutases: Threat and Defense. Autoxid. Food Biol. Syst. 1980, 429–446. [Google Scholar] [CrossRef]
- Fink, R.C.; Scandalios, J.G. Molecular Evolution and Structure–Function Relationships of the Superoxide Dismutase Gene Families in Angiosperms and Their Relationship to Other Eukaryotic and Prokaryotic Superoxide Dismutases. Arch. Biochem. Biophys. 2002, 399, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.A.; Cabelli, D.E. Superoxide dismutases—A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2010, 1804, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.L.; Neupane, K.; Shearer, J.; Palenik, B. Diversity, function and evolution of genes coding for putative Ni-containing superoxide dismutases. Environ. Microbiol. 2008, 10, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Wang, W.; Yuan, R.; Den, F.; Shen, F.F. Superoxide Dismutase and Its Research in Plant Stress-Tolerance. Mol. Plant Breed. 2015, 13, 2633–2646. [Google Scholar]
- Zeng, X.-C.; Liu, Z.-G.; Shi, P.-H.; Xu, Y.-Z.; Sun, J.; Fang, Y.; Yang, G.; Wu, J.-Y.; Kong, D.-J.; Sun, W.-C. Cloning and Expression Analysis of Copper and Zinc Superoxide Dismutase (Cu/Zn-SOD) Gene from Brassica campestris L. Acta Agron. Sin. 2014, 40, 636–643. [Google Scholar] [CrossRef]
- Song, J.; Zeng, L.; Chen, R.; Wang, Y.; Zhou, Y. In Silico Identification and Expression Analysis of Superoxide Dismutase (SOD) Gene Family in Medicago Truncatula. 3 Biotech 2018, 8, 348. [Google Scholar] [CrossRef]
- Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2010, 1804, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Lüttge, U.; Ratajczak, R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol. 2004, 161, 285–293. [Google Scholar] [CrossRef]
- Pilon, M.; Ravet, K.; Tapken, W. The Biogenesis and Physiological Function of Chloroplast Superoxide Dismutases. Biochim. Biophys. Acta (BBA)—Bioenerg. 2011, 1807, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Krouma, A.; Drevon, J.-J.; Abdelly, C. Genotypic variation of N2-fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. J. Plant Physiol. 2006, 163, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lai, Z.; Lin, Y.; Lai, G.; Lian, C. Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genom. 2015, 16, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, K.; Yu, J.; Cheng, Y.; Ruan, M.; Wang, R.; Ye, Q.; Zhou, G.; Li, Z.; Yao, Z.; Yang, Y.; et al. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Front. Plant Sci. 2016, 7, 1279. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.-J.; Zhang, L.; Wang, R.-Q.; Xie, B.; Li, X.; Chen, R.-L.; Guo, L.-X.; Xie, B.-G. The Sequence Characteristics and Expression Models Reveal Superoxide Dismutase Involved in Cold Response and Fruiting Body Development in Volvariella volvacea. Int. J. Mol. Sci. 2015, 17, 34. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Raza, A.; Gao, A.; Jia, Z.; Zhang, Y.; Hussain, M.A.; Mehmood, S.S.; Cheng, Y.; Lv, Y.; Zou, X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed (Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Chen, J.; Li, R.; Shang, S.; Tang, X. Genome-wide analysis of the superoxide dismutase (SOD) gene family in Zostera marina and expression profile analysis under temperature stress. PeerJ 2020, 8, e9063. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-M.; Hua, W.-P.; Cao, X.-Y.; Yan, J.-A.; Chen, C.; Wang, Z.-Z. Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene 2020, 742, 144603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Chen, Y.; Wang, S.; Fang, Y.; Zhang, X.; Wu, Y.; Xue, D. Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley. Plant Growth Regul. 2021, 94, 49–60. [Google Scholar] [CrossRef]
- Gomez, J.M.; Hernandez, J.A.; Jimenez, A.; Del Rio, L.A.; Sevilla, F. Differential Response of Antioxidative Enzymes of Chloroplasts and Mitochondria to Long-term NaCl Stress of Pea Plants. Free. Radic. Res. 1999, 31, 11–18. [Google Scholar] [CrossRef]
- Wu, G.; Wilen, R.W.; Robertson, A.J.; Gusta, L.V. Isolation, Chromosomal Localization, and Differential Expression of Mitochondrial Manganese Superoxide Dismutase and Chloroplastic Copper/Zinc Superoxide Dismutase Genes in Wheat. Plant Physiol. 1999, 120, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.-H.; Skinner, D.Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 2003, 165, 1221–1227. [Google Scholar] [CrossRef]
- Srivastava, V.; Srivastava, M.K.; Chibani, K.; Nilsson, R.; Rouhier, N.; Melzer, M.; Wingsle, G. Alternative Splicing Studies of the Reactive Oxygen Species Gene Network in Populus Reveal Two Isoforms of High-Isoelectric-Point Superoxide Dismutase. Plant Physiol. 2009, 149, 1848–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Feng, Z.; Bian, L.; Xie, H.; Liang, J. miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct. Plant Biol. 2010, 38, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Chen, L.; Yang, G.; Zhou, M.; Song, Y.; Hu, Z.; Liu, J.Y. Nuclear DNA C-values in 12 species in Nymphaeales. Caryologia 2006, 59, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, F.; Zhang, X.; Li, Z.; Zhao, Y.; Lohaus, R.; Chang, X.; Dong, W.; Ho, S.Y.W.; Liu, X.; et al. The water lily genome and the early evolution of flowering plants. Nature 2020, 577, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Kliebenstein, D.J.; Monde, R.-A.; Last, R.L. Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization. Plant Physiol. 1998, 118, 637–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, J.; Milpetz, F.; Bork, P.; Ponting, C.P. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. USA 1998, 95, 5857–5864. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R. MUSCLE: Multiple sequence alignment with improved accuracy and speed. In Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004, Stanford, CA, USA, 19 August 2004; pp. 728–729. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acid Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-Wide Identification and Transcriptional Expression Analysis of Cucumber Superoxide Dismutase (SOD) Family in Response to Various Abiotic Stresses. Int. J. Genom. 2017, 2017, 7243973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Yang, Y.; Chen, Y.; Su, Q.; Zhao, Y.; Wang, J.; Xia, Z.; Wang, L.; Zhang, L.; et al. Water lily research: Past, present, and future. Trop. Plants 2023, 2, 1–8. [Google Scholar] [CrossRef]
- Hu, X.; Hao, C.; Cheng, Z.-M.; Zhong, Y. Genome-Wide Identification, Characterization, and Expression Analysis of the Grapevine Superoxide Dismutase (SOD) Family. Int. J. Genom. 2019, 2019, 7350414. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Deng, F.; Yuan, R.; Shen, F. Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum. BMC Genom. 2017, 18, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya, K.; Kavi Kishor, P.B.; Bhatnagar-Mathur, P.; Singam, P.; Sharma, K.K.; Vadez, V.; Reddy, P.S. Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Mol. Biol. Rep. 2019, 46, 6039–6052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Wang, H.; Tong, Y.; Wang, Y. Insights into the Superoxide Dismutase Gene Family and Its Roles in Dendrobium catenatum under Abiotic Stresses. Plants 2020, 9, 1452. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, L.; Shang, J.; Hu, X.; Yu, H.; Wu, H.; Lv, W.; Zhao, Y. Genome-wide analysis of the maize superoxide dismutase (SOD) gene family reveals important roles in drought and salt responses. Genet. Mol. Biol. 2021, 44, 1–12. [Google Scholar] [CrossRef]
- Dehury, B.; Sarma, K.; Sarmah, R.; Sahu, J.; Sahoo, S.; Sahu, M.; Sen, P.; Modi, M.K.; Sharma, G.D.; Choudhury, M.D.; et al. In silico analyses of superoxide dismutases (SODs) of rice (Oryza sativa L.). J. Plant Biochem. Biotechnol. 2013, 22, 150–156. [Google Scholar] [CrossRef]
- Nath, K.; Kumar, S.; Poudyal, R.S.; Yang, Y.N.; Timilsina, R.; Park, Y.S.; Nath, J.; Chauhan, P.S.; Pant, B.; Lee, C.-H. Developmental stage-dependent differential gene expression of superoxide dismutase isoenzymes and their localization and physical interaction network in rice (Oryza sativa L.). Genes Genom. 2014, 36, 45–55. [Google Scholar] [CrossRef]
- Wang, W.; Xia, M.; Chen, J.; Deng, F.; Yuan, R.; Zhang, X.; Shen, F. Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. Plant Gene 2016, 6, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Lakhanpal, N.; Singh, K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genom. 2019, 20, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, C.L.; Cabelli, D.E.; Tainer, J.A.; Hallewell, R.A.; Getzoff, E.D. The role of arginine 143 in the electrostatics and mechanism of Cu, Zn superoxide dismutase: Computational and experimental evaluation by mutational analysis. Proteins Struct. Funct. Bioinform. 1994, 19, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, X.; Xiao, Z.; Yin, X.; Xing, T.; Xia, G. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Mol. Biol. 2016, 91, 115–130. [Google Scholar] [CrossRef]
- Guan, Q.; Liao, X.; He, M.; Li, X.; Wang, Z.; Ma, H.; Yu, S.; Liu, S. Tolerance Analysis of Chloroplast OsCu/Zn-SOD Overexpressing Rice under NaCl and NaHCO3 Stress. PLoS ONE 2017, 12, e0186052. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Lei, Y.; Yi, Z.; Raza, A.; Zeng, L.; Yan, L.; Xiaoyu, D.; Yong, C.; Xiling, Z. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul. 2021, 94, 161–170. [Google Scholar] [CrossRef]
Plant Species | Transcript ID | Gene Name | Pfam Domains | Protein Length (A.A) | Functional Annotations | MW (kDa) | pI | Subcellular-Localization | GRAVY |
---|---|---|---|---|---|---|---|---|---|
Nymphaea colorata | Nycol.F01435 | NcCSD1 | PF00080 | 161 | Cu/Zn-SOD | 16.337 | 7.19 | Cytoplasmic | −0.121 |
Nycol.E01211 | NcCSD2 | PF00080 | 170 | Cu/Zn-SOD | 17.134 | 5.72 | Cytoplasmic | −0.108 | |
Nycol.L00920 | NcCSD3 | PF00080 | 223 | Cu/Zn-SOD | 22.902 | 5.96 | Chloroplast | 0.025 | |
Nycol.A03620 | NcFSD1 | PF00081 | 198 | Fe-SOD | 23.178 | 6.23 | Mitochondrial | −0.409 | |
Nycol.B01638 | NcFSD2 | PF00081 | 275 | Fe-SOD | 31.321 | 9.27 | Chloroplast | −0.328 | |
Nycol.D01220 | NcFSD3 | PF00081 | 239 | Fe-SOD | 26.823 | 5.66 | Chloroplast | −0.437 | |
Nycol.D01221 | NcFSD4 | PF00081 | 308 | Fe-SOD | 35.007 | 5.31 | Chloroplast | −0.618 | |
Nycol.J01291 | NcFSD5 | PF00081 | 249 | Fe-SOD | 27.667 | 7.86 | Chloroplast | −0.335 | |
Nycol.L00218 | NcMnSD1 | PF02777 | 260 | Mn-SOD | 29.073 | 7.71 | Mitochondrial | −0.332 | |
Nymphaea mexicana | NM3G27.30 | NMCSD1 | PF00080 | 135 | Cu/Zn-SOD | 13.478 | 5.45 | Cytoplasmic | −0.246 |
NM27G140.23 | NMCSD2 | PF00080 | 177 | Cu/Zn-SOD | 18.221 | 6.82 | Cytoplasmic | −0.071 | |
NM26G14.21 | NMCSD3 | PF00080 | 117 | Cu/Zn-SOD | 12.166 | 6.41 | Cytoplasmic | 0.156 | |
NM16G174.41 | NMCSD4 | PF00080 | 135 | Cu/Zn-SOD | 13.478 | 5.45 | Cytoplasmic | −0.246 | |
NM15G96.16 | NMCSD5 | PF00080 | 253 | Cu/Zn-SOD | 26.721 | 4.68 | Cytoplasmic | −0.091 | |
NM15G40.65 | NMFSD1 | PF00081 | 231 | Fe-SOD | 25.785 | 6.8 | Mitochondrial | −0.298 | |
NM9G74.16 | NMFSD2 | PF00081 | 259 | Fe-SOD | 29.11 | 6.39 | Chloroplast | −0.324 | |
NM5G64.29 | NMFSD3 | PF00081 | 259 | Fe-SOD | 29.12 | 7.02 | Chloroplast | −0.306 | |
NM6G47.44 | NMFSD4 | PF00081 | 306 | Fe-SOD | 34.951 | 5.39 | Chloroplast | −0.588 | |
NM5G249.61 | NMFSD5 | PF00081 | 297 | Fe-SOD | 33.521 | 5.34 | Chloroplast | −0.607 | |
NM14G120.45 | NMMnSD1 | PF02777 | 259 | Mn-SOD | 28.748 | 8.7 | Mitochondrial | −0.284 | |
NM8G53.44 | NMMnSD2 | PF02777 | 271 | Mn-SOD | 31.044 | 9.05 | Chloroplast | −0.302 | |
NM7G151.45 | NMMnSD3 | PF02777 | 247 | Mn-SOD | 28.178 | 7.09 | Chloroplast | −0.323 | |
NM5G249.14 | NMMnSD4 | PF02777 | 236 | Mn-SOD | 26.48 | 5.38 | Cytoplasmic | −0.408 | |
NM6G47.40 | NMMnSD5 | PF02777 | 240 | Mn-SOD | 26.914 | 5.39 | Cytoplasmic | −0.414 | |
Nymphaea minuta | Nmin13g00218 | NminCSD1 | PF00080 | 160 | Cu/Zn-SOD | 16.397 | 6.86 | Cytoplasmic | −0.15 |
Nmin06g00456 | NminCSD2 | PF00080 | 122 | Cu/Zn-SOD | 12.78 | 8.88 | Cytoplasmic | −0.115 | |
Nmin08g00862 | NminCSD3 | PF00080 | 320 | Cu/Zn-SOD | 33.427 | 5.13 | Cytoplasmic | 0.104 | |
Nmin08g01659 | NminFSD1 | PF00081 | 231 | Fe-SOD | 25.827 | 6.8 | Mitochondrial | −0.348 | |
Nmin00g05403 | NminFSD2 | PF00081 | 237 | Fe-SOD | 26.373 | 7.17 | Cytoplasmic | −0.278 | |
Nmin02g01006 | NminFSD3 | PF00081 | 259 | Fe-SOD | 29.041 | 7.71 | Mitochondrial | −0.303 | |
Nmin05g01512 | NminFSD4 | PF00081 | 362 | Fe-SOD | 40.905 | 5.15 | Cytoplasmic | −0.552 | |
Nmin01g00323 | NminMnSD1 | PF00081 | 230 | Mn-SOD | 24.608 | 7.96 | Cytoplasmic | −0.155 | |
Nmin05g01511 | NminMnSD2 | PF02777 | 238 | Mn-SOD | 26.783 | 5.51 | Cytoplasmic | −0.421 | |
Nymphaea thermarum | KAF3774564.1 | NtCSD1 | PF00080 | 161 | Cu/Zn-SOD | 16.75 | 5.36 | Cytoplasmic | 0.05 |
KAF3777549.1 | NtCSD2 | PF00080 | 267 | Cu/Zn-SOD | 28.061 | 9.47 | Mitochondrial | −0.023 | |
KAF3779999.1 | NtCSD3 | PF00080 | 267 | Cu/Zn-SOD | 28.053 | 4.86 | Cytoplasmic | −0.122 | |
KAF3781552.1 | NtCSD4 | PF00080 | 158 | Cu/Zn-SOD | 17.099 | 5.51 | Cytoplasmic | −0.124 | |
KAF3786936.1 | NtMnSD1 | PF02777 | 248 | Mn-SOD | 27.721 | 7.86 | Mitochondrial | −0.352 | |
KAF3791217.1 | NtFSD1 | PF00081 | 274 | Fe-SOD | 31.403 | 9.3 | Mitochondrial | −0.343 | |
KAF3782520.1 | NtFSD2 | PF00081 | 259 | Fe-SOD | 28.995 | 7.71 | Mitochondrial | −0.285 | |
KAF3793027.1 | NtFSD3 | PF00081 | 306 | Fe-SOD | 34.987 | 5.39 | Mitochondrial | −0.635 | |
KAF3793028.1 | NtFSD4 | PF00081 | 238 | Fe-SOD | 26.841 | 5.66 | Cytoplasmic | −0.415 | |
KAF3779312.1 | NtFSD5 | PF00081 | 351 | Fe-SOD | 39.341 | 10.15 | Cytoplasmic | −0.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.U.; Khan, L.U.; Chen, D.; Chen, F. Comparative Analyses of Superoxide Dismutase (SOD) Gene Family and Expression Profiling under Multiple Abiotic Stresses in Water Lilies. Horticulturae 2023, 9, 781. https://doi.org/10.3390/horticulturae9070781
Khan WU, Khan LU, Chen D, Chen F. Comparative Analyses of Superoxide Dismutase (SOD) Gene Family and Expression Profiling under Multiple Abiotic Stresses in Water Lilies. Horticulturae. 2023; 9(7):781. https://doi.org/10.3390/horticulturae9070781
Chicago/Turabian StyleKhan, Wasi Ullah, Latif Ullah Khan, Dan Chen, and Fei Chen. 2023. "Comparative Analyses of Superoxide Dismutase (SOD) Gene Family and Expression Profiling under Multiple Abiotic Stresses in Water Lilies" Horticulturae 9, no. 7: 781. https://doi.org/10.3390/horticulturae9070781
APA StyleKhan, W. U., Khan, L. U., Chen, D., & Chen, F. (2023). Comparative Analyses of Superoxide Dismutase (SOD) Gene Family and Expression Profiling under Multiple Abiotic Stresses in Water Lilies. Horticulturae, 9(7), 781. https://doi.org/10.3390/horticulturae9070781