Evaluation of Genetic Variability within a Collection of Cumin Genotypes Using RAPD, ISSR, SRAP and SCoT Markers and Variability of In Vitro Callus Induced Therefrom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Molecular Analysis
2.2.1. DNA Extraction and Purification
2.2.2. Molecular Markers
2.2.3. Data Analysis
2.3. In Vitro Seed Germination and Callus Induction
3. Results
3.1. Molecular Analysis
3.2. Callus Induction and Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Archangi, A.; Mohammadi-Nejad, G.; Heidari, B. Assessing genetic diversity and aggregate genotype selection in a collection of cumin (Cuminum cyminum L.) accessions under drought stress: Application of BLUP and BLUE. Sci. Hortic. 2022, 299, 111028. [Google Scholar] [CrossRef]
- Riasat, M.; Heidari, B.; Pakniyat, H.; Jafari, A.A. Assessment of variability in secondary metabolites and expected response to genotype selection in fenugreek (Trigonella spp.). Ind. Crops Prod. 2018, 123, 221–231. [Google Scholar] [CrossRef]
- Parashar, M.; Malik, C.P. Appraisal of genetic diversity in Cuminum cyminum L. using molecular markers. Int. J. Life Sci. 2014, 3, 143–156. [Google Scholar] [CrossRef]
- Bharti, R.; Kumar, S.; Parekh, M.J. Development of genomic simple sequence repeat (gSSR) markers in cumin and their application in diversity analyses and cross-transferability. Ind. Crops Prod. 2018, 111, 158–164. [Google Scholar] [CrossRef]
- Kumar, S.; Saxena, S.N.; Mistry, J.G.; Fougat, R.S.; Solanki, R.K.; Sharma, R. Understanding Cuminum cyminum: An important seed spice crop of arid and semi-arid regions. Int. J. Seed Spices 2015, 5, 1–19. [Google Scholar]
- Heidari, M.; Sadeghi, H. Germination and emergence of primed cumin (Cuminum cyminum L.) seeds with GA3 under different temperature regimes. Int. J. Biosci. 2014, 5, 266–272. [Google Scholar]
- Parashar, M.; Malik, C.P. Appraisal of genetic diversity in Cuminum cyminum Linn. using SCoT and CCMP markers. Phytomorphology 2015, 65, 31–38. [Google Scholar]
- Parashar, M.; Jakhar, M.L.; Malik, C.P. A review of biotechnology, genetic diversity in cumin (cuminum cyminum). Int. J. Life Sci. Pharma Res. 2014, 4, 17–34. [Google Scholar]
- Rukhsar; Patel, M.P.; Parmar, D.J.; Kalola, A.D.; Kumar, S. Morphological and molecular diversity patterns in castor germplasm accessions. Ind. Crops Prod. 2017, 97, 316–323. [Google Scholar] [CrossRef]
- Kumar, S.; Mahendi, H.A.; Fougat, R.S.; Sakure, A.A.; Mistry, J.G. Transferability of carrot (Daucus carota) microsatellite markers to cumin (Cuminum cyminum). Int. J. Seed Spices 2014, 4, 88–90. [Google Scholar]
- Chavhan, R.L.; Sable, S.; Narwade, A.V.; Hinge, V.R.; Kalbande, B.B.; Mukherjee, A.K.; Chakrabarty, P.K.; Kadam, U.S. Multiplex molecular marker-assisted analysis of significant pathogens of cotton (Gossypium sp.). Biocatal. Agric. Biotechnol. 2023, 47, 102557. [Google Scholar] [CrossRef]
- Hinge, V.R.; Shaikh, I.M.; Chavhan, R.L.; Deshmukh, A.S.; Shelake, R.M.; Ghuge, S.A.; Dethe, A.M.; Suprasanna, P.; Kadam, U.S. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci. Rep. 2022, 12, 7979. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.M.; Aher, L.; Karibasappa, G.S. Microsatellite analysis to differentiate clones of Thompson seedless grapevine. Indian J. Hortic. 2010, 67, 260–263. [Google Scholar]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.; Karibasappa, G.S. Microsatellite and RAPD analysis of grape (Vitis spp.) accessions and identification of duplicates/misnomers in germplasm collection. Indian J. Hortic. 2010, 67, 8–15. [Google Scholar]
- Bhatt, J.; Kumar, S.; Patel, S.; Solanki, R. Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Ann. Agrar. Sci. 2017, 15, 434–438. [Google Scholar] [CrossRef]
- Baghizadeh, A.; Salar Karimi, M.; Pourseyedi, S.H. Genetic diversity assessment of Iranian green cumin genotypes by RAPD molecular markers. Int. J. Plant Prod. 2013, 4, 472–479. [Google Scholar]
- Bahraminejad, A.; Mohammadi-Nejad, G.; Abdul Kadir, K.; Bin Yusop, M.R.; Samia, M.A. Molecular diversity of Cumin (’Cuminum cyminum’ L.) using RAPD markers. Aust. J. Crop Sci. 2012, 6, 194–199. [Google Scholar]
- Zabet, M.; Rahimi, A.; Izanlo, A.; Alizadeh, Z. Investigation of genetic variation in cumin (Cuminum cyminum) ecotypes of Khorasan Provinces using RAPD and ISSR markers. Agric. Biotechnol. J. 2019, 11, 75–98. [Google Scholar] [CrossRef]
- Sen, M.K.; Nasrin, S.; Rahman, S.; Jamal, A.H.M. In vitro callus induction and plantlet regeneration of Achyranthes aspera L., a high value medicinal plant. Asian Pac. J. Trop. Biomed. 2014, 4, 40–46. [Google Scholar] [CrossRef]
- Kirillova, N.V.; Smirnova, M.G.; Komov, V.P. Sequential Isolation of Superoxide Dismutase and Ajmaline from Tissue Cultures of Rauwolfia serpentina Benth. Appl. Biochem. Microbiol. 2001, 37, 160–163. [Google Scholar] [CrossRef]
- Bhatia, S. Application of Plant Biotechnology. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bhatia, S., Sharma, K., Dahiya, R., Bera, T., Eds.; Academic Press: Boston, MA, USA, 2015; Chapter 5; pp. 157–207. [Google Scholar]
- Jha, T.B.; Roy, S.C.; Mitra, G.C. In vitro culture of Cuminum cyminum regeneration of flowering shoots from calli of hypocotyl and leaf explants. Plant Cell Tissue Organ Cult. 1982, 2, 11–14. [Google Scholar] [CrossRef]
- Beiki, A.H.; Mafavi-fard, M.R.; Ahmadi, J. Optimization of Two Different Morphogenesis Pathways in Three Iranian Cumin Landraces with the use of an Embryo. Biotechnol. Biotechnol. Equip. 2011, 25, 2228–2232. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D. Studies on biochemical markers associated with regeneration potential in Cuminum cyminum L. Res. J. Chem. Environ. Sci. 2013, 1, 63–65. [Google Scholar]
- Tawfik, A.A.; Noga, G. Cumin regeneration from seedling derived embryogenic callus in response to amended kinetin. Plant Cell Tissue Organ Cult. 2002, 69, 35–40. [Google Scholar] [CrossRef]
- Križman, M.; Jakše, J.; Baričevič, D.; Javornik, B.; Prošek, M. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric. Slov. 2006, 87, 427–433. [Google Scholar]
- Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Chyi, Y.S.; Romero-Severson, J.; Owen, J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 1994, 89, 998–1006. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants. Plant Mol. Biol. Rep. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Li, G.; Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–270. [Google Scholar]
- Roldán-Ruiz, I.; Dendauw, J.; Van Bockstaele, E.; Depicker, A.; De Loose, M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 2000, 6, 125–134. [Google Scholar] [CrossRef]
- Prevost, A.; Wilkinson, M.J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 1999, 98, 107–112. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [CrossRef]
- Varshney, R.K.; Chabane, K.; Hendre, P.S.; Aggarwal, R.K.; Graner, A. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 2007, 173, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Chen, S.-Y.; Dai, T.-X.; Chang, Y.-T.; Wang, S.-S.; Ou, S.-L.; Chuang, W.-L.; Chuang, C.-Y.; Lin, Y.-H.; Lin, Y.-Y.; Ku, H.-M. Genetic diversity among “Ocimum” species based on ISSR, RAPD and SRAP markers. Aust. J. Crop Sci. 2013, 7, 1463–1471. [Google Scholar]
- Rostami-Ahmadvandi, H.; Cheghamirza, K.; Kahrizi, D.; Bahraminejad, S. Comparison of morpho-agronomic traits versus RAPD and ISSR markers in order to evaluate genetic diversity among Cuminum cyminum L. accessions. Aust. J. Crop Sci. 2013, 7, 361–367. [Google Scholar]
- Mohammadizadeh, M.S.; Bahadori, F.; Hakimi, L.; Dehshiri, A. Evaluation of Molecular Diversity Analysis and Relation with Environmental Factors in Accessions of Cumin (Cuminum cyminum L.) in Iran, Revealed by Inter-Simple Sequence Repeat (ISSR) Markers and Start Codon Targeted (SCoT) Markers. 2020. Available online: https://www.researchsquare.com/article/rs-35133/v1 (accessed on 2 February 2023).
- Bahraminejad, A.; Mohammadinejad, G. Use of microsatellite markers for molecular characterization of cumin (Cuminum cyminum L.) ecotypes. Iran. J. Genet. Plant Breed. 2013, 2, 35–41. [Google Scholar]
- Mohamamadizadeh, M.S.; Bahadori, F.; Hakimi, L.; Khalighi, A.; Dehshiri, A. Genetic Diversity of Iranian Cumin (Cuminum cyminum L.) Accessions, using Inter-Simple Sequence Repeat (ISSR) and Start Codon Targeted (SCoT) Markers. J. Med. Plants By-Prod. 2021, 11, 25–35. [Google Scholar] [CrossRef]
- Nakasha, J.J.; Sinniah, U.R.; Kemat, N.; Mallappa, K.S. Induction, subculture cycle, and regeneration of callus in safed musli (Chlorophytum borivilianum) using different types of phytohormones. Pharmacogn. Mag. 2016, 12, S460–S464. [Google Scholar] [PubMed] [Green Version]
- Lo, K.; Nadali, B.J.; Chan, L.-K. Investigation on the effect of subculture frequency and inoculum size on the artemisinin content in a cell suspension culture of Artemisia annua L. Aust. J. Crop Sci. 2012, 6, 801–807. [Google Scholar]
- Soorni, J.; Kahrizi, D. Effect of Genotype, Explant Type and 2,4-D on Cell Dedifferentiation and Callus Induction in Cumin (Cuminum cyminum L.) Medicinal Plant. J. Appl. Biotechnol. Rep. 2015, 2, 265–270. [Google Scholar]
- Tawfik, A.A.; Noga, G.J. Differentiation of somatic embryos in suspension cultures and plant regeneration of cumin (Cuminum cyminum L.). J. Appl. Bot. 2002, 76, 144–149. [Google Scholar]
- Suthar, R.; Bhatt, P.N.; Bhatt, D.P. Selection of vascular wilt resistance cumin callus to culture filtrate of Fusarium equiseti and regeneration of plants. Vegetos 2021, 34, 318–324. [Google Scholar] [CrossRef]
No. | Code/Accession Number | Origin | Seeds Source |
---|---|---|---|
1 | EG-01 | Egypt | Assiut region, Egypt |
2 | EG-02 | Egypt | Assiut region, Egypt |
3 | EG-03 | Egypt | Assiut region, Egypt |
4 | EG-04 | Egypt | El-Menia region, Egypt |
5 | EG-05 | Egypt | El-Menia region, Egypt |
6 | EG-06 | Egypt | El-Menia region, Egypt |
7 | IPK-07 | Iraq | IPK * Accession ID, 78080 |
8 | IPK-08 | Colombia | IPK Accession ID, 75537 |
9 | IPK-09 | Iran | IPK Accession ID, 67599 |
10 | IPK-10 | Pakistan | IPK Accession ID, 60368 |
11 | IPK-11 | Pakistan | IPK Accession ID, 60369 |
12 | IPK-12 | Pakistan | IPK Accession ID, 60370 |
13 | IPK-13 | Pakistan | IPK Accession ID, 60372 |
14 | IPK-14 | Pakistan | IPK Accession ID, 60374 |
15 | IPK-15 | Pakistan | IPK Accession ID, 60375 |
16 | IPK-16 | Pakistan | IPK Accession ID, 60376 |
17 | GR-17 | Germany | Aschersleben, Germany |
Marker | Primer | Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
TNB | NPB | %P | PIC | Rp | DI | He | MI | ||
RAPD | OPA-01 | 11 | 2 | 18.18 | 0.06 | 1.06 | 0.08 | 0.04 | 0.02 |
OPA-10 | 9 | 1 | 11.11 | 0.05 | 0.59 | 0.06 | 0.03 | 0.01 | |
OPA-19 | 11 | 1 | 9.09 | 0.01 | 0.12 | 0.02 | 0.01 | 0.00 | |
OPA-09 | 8 | 1 | 12.50 | 0.01 | 0.12 | 0.03 | 0.01 | 0.00 | |
OPA-11 | 13 | 7 | 53.85 | 0.10 | 1.76 | 0.15 | 0.09 | 0.37 | |
OPB-02 | 8 | 1 | 12.50 | 0.04 | 0.35 | 0.03 | 0.06 | 0.00 | |
OPB-03 | 8 | 1 | 12.50 | 0.03 | 0.24 | 0.05 | 0.01 | 0.00 | |
OPG-18 | 10 | 1 | 10.00 | 0.01 | 0.12 | 0.02 | 0.01 | 0.00 | |
OPL-16 | 11 | 2 | 18.18 | 0.04 | 0.47 | 0.06 | 0.02 | 0.01 | |
OPL-07 | 10 | 2 | 20.00 | 0.06 | 0.94 | 0.07 | 0.05 | 0.02 | |
Total | 99 | 19 | 19.19 | 0.04 | 0.58 | 0.06 | 0.03 | 0.04 | |
ISSR | A | 13 | 6 | 46.15 | 0.11 | 1.65 | 0.11 | 0.16 | 0.29 |
B | 8 | 3 | 37.50 | 0.17 | 2.24 | 0.17 | 0.16 | 0.19 | |
UBC-112 | 10 | 6 | 60.00 | 0.17 | 2.59 | 0.15 | 0.25 | 0.62 | |
UBC-811 | 13 | 2 | 15.38 | 0.07 | 1.65 | 0.07 | 0.07 | 0.02 | |
UBC-841 | 14 | 1 | 7.14 | 0.03 | 0.71 | 0.04 | 0.02 | 0.00 | |
UBC-854 | 7 | 3 | 42.86 | 0.09 | 0.71 | 0.07 | 0.19 | 0.11 | |
Total | 65 | 21 | 32.31 | 0.11 | 1.59 | 0.10 | 0.14 | 0.21 | |
SCoT | 6 | 7 | 3 | 42.86 | 0.11 | 0.94 | 0.17 | 0.06 | 0.14 |
12 | 11 | 2 | 18.18 | 0.05 | 0.71 | 0.07 | 0.03 | 0.02 | |
17 | 10 | 4 | 40.00 | 0.14 | 2.12 | 0.17 | 0.11 | 0.23 | |
25 | 14 | 2 | 14.29 | 0.05 | 0.94 | 0.04 | 0.07 | 0.01 | |
30 | 21 | 4 | 19.05 | 0.04 | 1.06 | 0.05 | 0.03 | 0.03 | |
33 | 13 | 2 | 15.38 | 0.04 | 0.59 | 0.04 | 0.04 | 0.01 | |
Total | 76 | 17 | 22.37 | 0.07 | 1.06 | 0.09 | 0.06 | 0.07 | |
SRAP | Me3/Em2 | 8 | 2 | 25.00 | 0.03 | 0.24 | 0.02 | 0.09 | 0.01 |
Me3/Em3 | 14 | 11 | 78.57 | 0.09 | 1.41 | 0.12 | 0.21 | 0.81 | |
Me3/Em4 | 12 | 4 | 33.33 | 0.04 | 0.59 | 0.05 | 0.10 | 0.06 | |
Total | 34 | 17 | 50.00 | 0.06 | 0.75 | 0.06 | 0.13 | 0.30 |
Growth Media | Accessions * | |||||||
---|---|---|---|---|---|---|---|---|
Basal Medium | Phytohormones mg/L | EG-1 | EG-2 | EG-3 | EG-4 | EG-5 | EG-6 | Mean |
MS | 2,4-D (4.44) | 100 ± 0 | 100 ± 0 | 0.0 ± 0 | 100 ± 0 | 83.3 ± 4 | 93.3 ± 5.2 | 79.4 |
2,4-D (4.44) + Kin (0.22) | 100 ± 0 | 100 ± 0 | 0.0 ± 0 | 96.7 ± 3.7 | 93.3 ± 5.5 | 100 ± 0 | 81.7 | |
2,4-D (8.88) | 83.3 ± 5 | 93.3 ± 5.5 | 0.0 ± 0 | 90.0 ± 4 | 83.3 ± 4 | 93.3 ± 5 | 73.9 | |
2,4-D (8.88) + Kin (0.22) | 90.0 ± 4 | 93.3 ± 3 | 13.3 ± 5.5 | 93.3 ± 4 | 83.3 ± 4 | 100 ± 0 | 78.9 | |
B5 | 2,4-D (4.44) | 86.7 ± 3.5 | 96.7 ± 3 | 0.0 ± 0 | 83.3 ± 3.7 | 86.7 ± 4 | 93.3 ± 5.4 | 74.4 |
2,4-D (4.44) + Kin (0.22) | 90.0 ± 4 | 90.0 ± 4 | 0.0 ± 0 | 96.7 ± 3.7 | 93.3 ± 5.2 | 100 ± 0 | 78.3 | |
2,4-D (8.88) | 80.0 ± 4 | 90.0 ± 8 | 0.0 ± 0 | 96.7 ± 3.7 | 100 ± 0 | 100 ± 0 | 77.8 | |
2,4-D (8.88) + Kin (0.22) | 100 ± 0 | 96.7 ± 3.7 | 0.0 ± 0 | 93.3 ± 4.7 | 100 ± 0 | 100 ± 0 | 81.7 | |
Mean | 91.3 | 95.0 | 1.7 | 93.8 | 90.4 | 97.5 | ||
LSD 0.05 | media | NS ** | Accessions | 7.4 | Media × Accessions | 21.0 |
Growth Media | Accessions * | ||||||
---|---|---|---|---|---|---|---|
Basal Medium | Phytohormones mg/L | EG-1 | EG-2 | EG-4 | EG-5 | EG-6 | Mean |
MS | 2,4-D (4.44) | 37.9 ± 0.6 | 38.1 ± 6.5 | 46.3 ± 2.9 | 31.2 ± 2.3 | 43.2 ± 1.6 | 39.4 |
2,4-D (4.44) + Kin (0.22) | 19.0 ± 0.3 | 22.2 ± 1.5 | 28.9 ± 1.2 | 16.5 ± 1.2 | 11.6 ± 2.4 | 19.6 | |
2,4-D (8.88) | 24.4 ± 0.5 | 28.1 ± 0.7 | 47.1 ± 3.6 | 39.6 ± 4.5 | 41.4 ± 4.3 | 36.1 | |
2,4-D (8.88) + Kin (0.22) | 19.5 ± 1.0 | 18.8 ± 1.6 | 16.6 ± 0.6 | 18.9 ± 0.9 | 21.1 ± 3.8 | 19.0 | |
B5 | 2,4-D (4.44) | 40.6 ± 1.2 | 33.4 ± 3.1 | 42.2 ± 2.3 | 36.4 ± 1.0 | 32.8 ± 4.3 | 37.1 |
2,4-D (4.44) + Kin (0.22) | 31.1 ± 2.6 | 23.5 ± 1.5 | 31.4 ± 1.4 | 27.7 ± 1.2 | 31.3 ± 1.7 | 29.0 | |
2,4-D (8.88) | 39.2 ± 2.4 | 38.0 ± 1.8 | 36.2 ± 5.6 | 47.4 ± 3.1 | 37.0 ± 1.8 | 39.6 | |
2,4-D (8.88) + Kin (0.22) | 23.9 ± 1.1 | 21.4 ± 4.4 | 25.3 ± 1.9 | 25.4 ± 0.9 | 26.7 ± 1.2 | 21.5 | |
Mean | 29.5 | 27.9 | 34.2 | 30.4 | 28.8 | ||
LSD 0.05 | media | 1.46 | Accessions | 1.57 | Media × Accessions | 3.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.A.A.; Abo-Elyousr, K.A.M.; Ibrahim, O.H.M. Evaluation of Genetic Variability within a Collection of Cumin Genotypes Using RAPD, ISSR, SRAP and SCoT Markers and Variability of In Vitro Callus Induced Therefrom. Horticulturae 2023, 9, 742. https://doi.org/10.3390/horticulturae9070742
Mousa MAA, Abo-Elyousr KAM, Ibrahim OHM. Evaluation of Genetic Variability within a Collection of Cumin Genotypes Using RAPD, ISSR, SRAP and SCoT Markers and Variability of In Vitro Callus Induced Therefrom. Horticulturae. 2023; 9(7):742. https://doi.org/10.3390/horticulturae9070742
Chicago/Turabian StyleMousa, Magdi A. A., Kamal A. M. Abo-Elyousr, and Omer H. M. Ibrahim. 2023. "Evaluation of Genetic Variability within a Collection of Cumin Genotypes Using RAPD, ISSR, SRAP and SCoT Markers and Variability of In Vitro Callus Induced Therefrom" Horticulturae 9, no. 7: 742. https://doi.org/10.3390/horticulturae9070742
APA StyleMousa, M. A. A., Abo-Elyousr, K. A. M., & Ibrahim, O. H. M. (2023). Evaluation of Genetic Variability within a Collection of Cumin Genotypes Using RAPD, ISSR, SRAP and SCoT Markers and Variability of In Vitro Callus Induced Therefrom. Horticulturae, 9(7), 742. https://doi.org/10.3390/horticulturae9070742