Research Progress on the Medicinal and Edible Polygala fallax Hemsl. (Polygalaceae) Plant
Abstract
:1. Introduction
2. Survey Methodology
3. Distribution of Wild Resources and Habitat Characteristics of P. fallax Hemsl. (Polygalaceae)
4. Morphological and Structural Characteristics of P. fallax Hemsl. (Polygalaceae)
5. Chemical Constituents and Pharmacological Efficacy of P. fallax Hemsl. (Polygalaceae)
6. Propagation and Cultivation of P. fallax Hemsl. (Polygalaceae)
7. Utilization Value of P. fallax Hemsl. (Polygalaceae)
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Song, Y.; Zhang, Q.; Chen, Z.; Zhang, H. Community structure and species diversity of precious herbs Polygala fallax Hemsl. J. Plant Genet. Resour. 2012, 13, 819–824. [Google Scholar] [CrossRef]
- Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Chemical constituents in roots of Polygala fallax and their anti-oxidation activities in vitro. China J. Chin. Mater. Med. 2005, 30, 827–830. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Wang, Z.; Xu, Q. The extract of Polygala fallax Hemsl. slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro. Phytomedicine 2022, 104, 154251. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Bai, Y.P.; Shi, R.Z.; Tan, G.S.; Hu, C.P.; Zhang, G.G. Inhibitory effect of reinioside C on vascular smooth muscle cells proliferation induced by angiotensin II via inhibiting NADPH oxidase-ROS-ENK1/2-NF-kappaB-AP-1 pathway. Pharmazie 2014, 69, 698–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.R.; Li, Y.; Wang, Z.W.; Lan, Y.Y.; Zeng, T.X.; Gong, H.F.; Zhu, K.M.; Tang, H.; Gu, S.J. Research on anti-hepatocellular carcinoma activity and mechanism of Polygala fallax Hemsl. J. Ethnopharmacol. 2020, 260, 113062. [Google Scholar] [CrossRef]
- Yao, Z.; Li, Y.; Zhu, K.; Tang, H.; Gu, S. Antioxidant and hypoglycemic activities of different parts partitioned from the ethanol extract of Polygala fallax Hemsl. Sci. Technol. Food Ind. 2020, 41, 55–59. [Google Scholar] [CrossRef]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Liu, B.; Wu, C.; Zhang, X.; Wang, M.; Huang, X.; Wan, L.; Tang, H. Effects of light intensity on the growth of Polygala fallax Hemsl. (Polygalaceae). Front. Plant Sci. 2022, 13, 985628. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Liu, J. Research summary of cultivation and utilization of Polygala fallax. Chin. Wild Plant Resour. 2016, 35, 48–52. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Z.; Zhu, D. Resources investigation and determination of total saponin content in Polygala fallax from Guangxi. J. Plant Resour. Environ. 2003, 12, 47–49. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.; Fan, F.; Xie, R.; Zhang, H.; Shen, Q.; Ji, C. Effects of different slope aspects and positions on the growth of under broadleaved forest. J. Jiangsu For. Sci. Technol. 2018, 45, 34–37. [Google Scholar] [CrossRef]
- Zhang, H. Fir and broad forest interplanted Polygala fallax growth effect analysis. J. Fujian For. Sci. Technol. 2013, 40, 113–116. [Google Scholar] [CrossRef]
- Wu, Z.; Peter, H.R.; Hong, D. 4. Polygala fallax Hemsley. In Flora of China; Science Press: Beijing, China, 2008; Volume 11. [Google Scholar]
- Wan, L.; Tang, H.; Liu, B.; Yan, X.; Su, X.; Wang, L. Research progress on the ethno-plant Polygala fallax Hemsl. J. Guangxi Acad. Sci. 2022, 38, 319–327. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, K.; Zhuo, C.; Wang, Z. The progression in research of medicinal plant of Polygala fallax Hemsl. J. Sanming Univ. 2008, 25, 197–199. [Google Scholar] [CrossRef]
- Lan, T. Bonsai cultivation techniques of medicinal and ornamental plant Polygala fallax Hemsl. Mod. Agric. Sci. Technol. 2015, 177–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.; Huang, X.; Liu, B.; Li, W. Study on the relationship between the growth of spring shoots and the dynamic changes of endogenous hormones in Polygala fallax. Guihaia 2022, 42, 796–801. [Google Scholar] [CrossRef]
- Quang, T.H.; Yen, D.T.H.; Nhiem, N.X.; Tai, B.H.; Ngan, N.T.T.; Anh, H.L.T.; Oh, H.; Kiem, P.V.; Minh, C.V. Oleanane-type triterpenoid saponins from the roots of Polygala aureocauda Dunn. Phytochem. Lett. 2019, 34, 59–64. [Google Scholar] [CrossRef]
- Ning, D.; Li, G.; Li, L.; Fu, Y.; Zou, Z.; Pan, Z. A new ε-truxillic acid derivative from the leaves of Polygala fallax. Chem. Nat. Compd. 2021, 57, 459–461. [Google Scholar] [CrossRef]
- Zhu, X.Y. Determination of six metallic elements in Polygala aureocauda Dunn and serissa serissoides (DC.) druce. Chin. J. Spectrosc. Lab. 2005, 22, 1227–1229. [Google Scholar] [CrossRef]
- Zhu, D.; Li, L.; Zhu, Y.; Yan, Y. Chemical constituents from the root of Polygala fallax Hemsl. J. China Pharm. Univ. 2003, 34, 222–224. [Google Scholar] [CrossRef]
- Hao, L.; Wang, Q.J.; Zhu, D.N.; Yang, Y. Reinioside C, a triterpene saponin of Polygala aureocauda Dunn, exerts hypolipidemic effect on hyperlipidemic mice. Phytother. Res. 2010, 22, 159–164. [Google Scholar] [CrossRef]
- Zhong, J.; Di, B.; Feng, F. Chemical constituents from root of Polygala fallax. Chin. Tradit. Herb. Drugs 2009, 40, 844–846. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Wang, J.; Zhu, D. Study of chemical constituents from root of Polygali fallax HemslII. J. China Pharm. Univ. 2004, 35, 110–113. [Google Scholar] [CrossRef]
- Xu, K.; Huang, W.; Tan, J.; Zhou, Y.; Li, F.; Huang, Z.; Liu, B.; Tan, G. Study on the antihyperlipidemia effective constituent of Polygala fallax Hemsl. J. Chin. Med. Mater. 2006, 29, 16–19. [Google Scholar] [CrossRef]
- Fu, J.; Zuo, L.; Yang, J.; Chen, R.; Zhang, D. Oligosaccharide polyester and triterpenoid saponins from the roots of Polygala japonica. Phytochemistry 2008, 69, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Miyase, T.; Kuroyanagi, M.; Umehara, K.; Noguchi, H. Nine new triterpene saponins, polygalasaponins XXXIII–XLI from the roots of Polygala fallax Hemsl. Chem. Pharm. Bull. 1996, 44, 2092–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Dai, J.; Huang, W.; Cen, Y.; Zhang, X.; Ye, W. Chemical constituents and antiviral activity of Polygala fallax. Chin. Tradit. Herb. Drugs 2009, 40, 345–348. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, K.; Zhou, Y.; Hu, G.; Tan, G. Studies on chemical constituents of Polygala aureocauda. Nat. Prod. Res. Dev. 2005, 17, 298–300. [Google Scholar] [CrossRef]
- Ma, W.; Wei, X.; Ling, T.; Xie, H.; Zhou, W. New phenolics from Polygala fallax. J. Nat. Prod. 2003, 66, 441–443. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, K.; Zhou, Y.; Hu, G.; Tan, G. A new xanthone from Polygala aureocauda Dunn. Acta Pharm. Sin. 2004, 39, 752–754. [Google Scholar] [CrossRef]
- Quang, T.H.; Yen, D.T.H.; Dung, D.T.; Trang, D.T.; Ngan, N.T.T.; Van Kiem, P.; Van Minh, C. Anti-inflammatory phenylpropanoid glycosides from the roots of Polygala aureocauda Dunn. Vietnam J. Chem. 2019, 57, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; He, S. Research progress of total synthesis of Polygalolides. Chin. J. Appl. Chem. 2023, 40, 615–624. [Google Scholar] [CrossRef]
- Zhang, D.; Miyase, T.; Kuroyanagi, M.; Umehara, K.; Noguchi, H. Oligosaccharide polyesters from roots of Polygala glomerata. Phytochemistry 1997, 45, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Ju, G.; Yang, S.; Zhao, X.; Chen, J.; Li, N. Total flavonoids of Polygala fallax Hemsl induce apoptosis of human ectopic endometrial stromal cells through PI3K/AKT/Bcl-2 signaling pathway. Gynecol. Obstet. Investig. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cao, Z.; Chen, J.; Fang, G. Research on the effects of the extract of Polygala fallax Hemsl on sex hormones and β-EP in perimenopausal rat models. J. Clin. Nurs. Res. 2020, 4, 120–124. [Google Scholar] [CrossRef]
- Yang, G.; Lang, Y. Extract identification and evaluation of the cytotoxic activity of Polygala fallax Hemsl in Heilongjiang ethnic medicine against tumors. Technol. Health Care 2023, 31, 565–575. [Google Scholar] [CrossRef]
- Guo, J.Y.; Wang, Q.J.; Wu, J.H.; Zhu, D.N. Studies on the protective effect of saponins from Polygala aureocauda on animal models of liver injury. Chin. J. Nat. Med. 2006, 4, 303–307. [Google Scholar]
- Zhang, G.G.; Bai, Y.P.; Chen, M.F.; Shi, R.Z.; Jiang, D.J.; Fu, Q.M.; Tan, G.S.; Li, Y.J. Asymmetric dimethylarginine induces TNF-α production via ROS/NF–κB dependent pathway in human monocytic cells and the inhibitory effect of reinioside C. Vasc. Pharmacol. 2008, 48, 115–121. [Google Scholar] [CrossRef]
- Qin, H.; Xia, X.; Li, Z. Effects of polysaccharide of Polygala aureocauda on the immunnity functions of normal mouse. J. Chin. Med. Mater. 1998, 21, 467–469. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Fan, X.; Zeng, J. Effect of Polygala fallax Hemsl. on blood lipid of mice. Lishizhen Med. Mater. Med. Res. 2008, 19, 650. [Google Scholar] [CrossRef]
- Sofiullah, S.S.M.; Murugan, D.D.; Muid, S.A.; Seng, W.Y.; Kadir, S.Z.S.A.; Abas, R.; Ridzuan, N.R.A.; Zamakshshari, N.H.; Woon, C.K. Natural bioactive compounds targeting NADPH oxidase pathway in cardiovascular diseases. Molecules 2023, 28, 1047. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Ma, R.; Zhu, D.; Yan, Y. Blood-activating and anti-inflammatory actions of Polygala fallax. J. Chin. Med. Mater. 2003, 26, 268–271. [Google Scholar]
- Liu, Y.; Mao, S.; Li, Y.; Hu, Q.; Zou, H.; Feng, X. Anticoagulant and antithrombotic effect and underlying mechanism of total saponins from the roots of Polygala fallax Hemsl: A study based on network pharmacology. Food Sci. 2021, 42, 206–213. [Google Scholar] [CrossRef]
- He, Y. The effects of Polygala fallax Hemsl. on immunity organ. J. Gannan Med. Univ. 2006, 26, 828–829. [Google Scholar]
- He, L.; Xu, Y.; Lu, Y.; Hu, S.; Chen, M.; Hu, H.; Li, J.; Si, H. Optimization of ultrasonic extraction process and antibacterial and anti-inflammatory effect of total flavonoids from Polygala fallax Hemsl. Anim. Husb. Vet. Med. 2023, 55, 55–61. [Google Scholar]
- Huang, F.; Lin, L.; Hu, J.; Liu, A.; Xiao, P.; Du, G. Antioxidant effect of Polygala fallax Hemsl. Chin. J. Nat. Med. 2006, 4, 291–294. [Google Scholar]
- Zhang, X.; Liu, S.; Zhang, R.; Lin, B.; Wang, J.; Lin, J.; Xu, Y. Purification, characterization and antioxidant activity of polysaccharides from Polygala fallax Hemsl. Food Res. Dev. 2019, 40, 51–56. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, Y.; Ye, Y.; Huang, Z. Influencing factors of field sowing on Polygala fallax. Hubei For. Sci. Technol. 2017, 46, 23–26. [Google Scholar] [CrossRef]
- Cai, S.; Chen, Q.; Ye, C.; Pan, Y.; Song, G. Influences of hormones and substrates on cutting rooting of Polygala arillata var. J. Sichuan For. Sci. Technol. 2005, 26, 65–67. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.; Wang, B.; Fan, F.; Shen, Q.; Chen, S.; Su, S. Polygala fallax Hemsl forests cutting seedling test. J. Fujian For. Sci. Technol. 2016, 43, 174–176. [Google Scholar] [CrossRef]
- Rao, W.; Cai, M.; Chen, C.; Li, Q.; Ding, W.; Zhang, D.; Zeng, W. Effects of different growth regulators and substaters on the rooting of Polygala fallax cutting. Guangdong For. Sci. Technol. 2015, 31, 62–64. [Google Scholar] [CrossRef]
- Yang, G.; Luo, J.; Mo, Y.; Chen, H. Tissue culture and rapid propagation in vitro of Polygala fallax. Plant Physiol. J. 2016, 52, 349–355. [Google Scholar] [CrossRef]
- Liu, X.; Lin, W.; Su, M.; Chen, S.; Wu, M. Study on tissue culture techniques for Polygala fallax Hemsl. Seed 2012, 31, 57–59. [Google Scholar] [CrossRef]
- Fei, X.; Tang, J.; Ju, M.; Yuan, L.; Li, B.; Xin, P. Research progress of Polygala fallax Hemsl. Hunan For. Sci. Technol. 2014, 41, 76–79. [Google Scholar] [CrossRef]
- Li, B.; Fei, X.; Tang, J.; Yin, L.; Han, G.; Xin, P. The technology research in vitro rapid propagation of Polygala fallax Hemsl. J. Gansu Agric. Univ. 2016, 51, 37–42. [Google Scholar] [CrossRef]
- Chen, S. Transplanting experiment of tissue culture seedlings of medicinal plant Polygala fallax Hemsl. For. Prospect Des. 2014, 111–113. [Google Scholar] [CrossRef]
- Xia, W. The biomass and its distribution of Polygala fallax Hemsl. interplanted under Pinus massoniana forest. For. Prospect Des. 2020, 40, 54–59. [Google Scholar]
- Lin, G. Effects of topdressing on the yield of Polygala fallax Hemsl. interplanted under Phyllostachys pubescens forest. For. Prospect Des. 2017, 37, 77–79. [Google Scholar]
- Weng, Q. Intercropping interaction effects analysis on undergrownth cultivation of Polygala fallax. South China For. Sci. 2018, 46, 28–30. [Google Scholar] [CrossRef]
- Qiu, J. Study on cultivation of Polygala fallax in bamboo forest. J. Fujian For. Sci. Technol. 2018, 45, 44–48. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, P.; Brand, E. The formation of daodi medicinal materials. J. Ethnopharmacol. 2012, 140, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, J.; Pang, Y.; Huang, S.; Peng, Z.; Zhou, Y.; Li, J.; Lu, J.; Liu, C. Review on pharmaceutical research and clinical application of Polygala fallax Hemsl. Liaoning J. Tradit. Chin. Med. 2018, 45, 648–650. [Google Scholar] [CrossRef]
- Liang, J.; Sha, X.; Wang, L. Treatment of chronic hepatitis with bailian decoction in 48 cases. J. Chin. Med. Mater. 2000, 23, 511–512. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C. Treatment of hyperlipidemia with “Zhuang Tong Yin” in 56 cases. Shaanxi Tradit. Chin. Med. 2009, 30, 169–170. [Google Scholar] [CrossRef]
- Li, G.; Deng, G.; Nong, C.; Yu, S.; Zhong, M. Clinical study on anti-hepatic fibrosis action of the capsule of sancao hugan. Chin. J. Integr. Tradit. West. Med. Liver Dis. 2005, 15, 72–73. [Google Scholar] [CrossRef]
- Lei, G.; Meng, J. Treatment of malignant tumor with Polygala fallax Hemsl. decoction in 20 cases. J. Guangxi Tradit. Chin. Med. Univ. 2007, 10, 13–14. [Google Scholar] [CrossRef]
Part | Characteristics |
---|---|
Root | The roots are bent, beaded, long cylindrical or spindle, and flat in most cases, with a diameter of 0.5~1.0 cm. The bark is grayish-yellow and thick, with wide longitudinal wrinkles, small branches; the texture is soft; and the bark is not completely broken transversely [13,14]. |
Branch and stem | The stems are gray, with light brown spots. The branches are cylindrical and grayish-green and densely covered with long and flat pubescence [9,13,15,16]. |
Leaf | The leaves are alternate, simple, lanceolate or elliptic-lanceolate, and membranous. They are 8~17 cm in length and 4~6.5 cm in width, with acuminate apex, cuneate or blunt bases, and margin entire. The leaf surface is dark green, whereas the back is light green, with pubescence on both sides. The main vein is sunken on the surface and bulging on the back, the lateral veins (8~9 pairs) are protruding on the back, with anastomosis at the margin, and the fine veins are reticulate and obvious. The petiole is 9~14 mm long, with grooves and pubescence [8,9,13,15,16,17]. |
Flower | The flowers are hermaphroditic and in terminal or axillary racemes. They are 8~15 cm long and erect. After flowering, they are extended up to 30 cm, drooping, and covered with pubescence. Each flower has five sepals that are caducous and have trichomes, including three outer sepals (with 1 in galeate shape in the middle and the other two in oval or round shape, 3 mm long) and two inner sepals (petal-like, obliquely obovate, rounded apex and tapered base). Each flower has three petals that are pure yellow, and the lateral petals are oblong, with the lower two-thirds fused with the carina, the base cassideous toward the calyx surface, and the inside glabrate. The carina is cassideous, and the cristate appendages are petiolate and fimbricate. There are eight stamens (approximately 10~11 mm in length, with the lower two-thirds connected to form a sheath) and oval anthers. The ovary is flattened and round, with trichomes, and the base has a ring-shaped disk. The style is 8~9 mm long, with the apex in two-lobed trumpets and brachypodous stigma [9,13,14,15,16]. |
Fruit | The capsules are broadly obcordate or round, greenish-yellow, and 10~14 mm in diameter, with semiconcentric convex ridges but no wings or trichomes, and the apex has rostrate mucrones and is brachypodous [9,13,15,16]. |
Seed | The seeds are round, brownish black to black, and approximately 4 mm in diameter, densely covered with white pubescence. The caruncle is cassideous, with a protruding apex [9,13,16]. |
Compounds | Extractive Fractions | Reference | |
---|---|---|---|
Saponins | hederagenin. | Roots | [21] |
reinioside C. | Roots | [22] | |
tenuifolin; presenegenin. | Roots | [23] | |
reinioside A; stigmasta-7, 22-dien-3-O-β-D-glucopyranoside. | Roots | [24] | |
3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D -xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3,4-diacetyl)-β-D-fucopyranosyl ester. | Roots | [25] | |
3β, 23, 27-trihydroxy-29-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl- olean-12-en-28-oic acid; 3-O-β-d-glucopyranosyl presenegenin 28-O-α-l -rhamnopyranosyl-(1→2)-β-D-fucopyranosyl ester; 3-O-β-d-glucopyranosyl presenegenin 28-O-β-d-galactopyranosyl-(1→5)-β- d-apiofuranosyl-(1→4)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl ester; 2β, 27-dihydroxy-3-O-β-d-glucopyranosyl 11-oxo-olean-12-en-23; 28-dioic acid 28-O-β-d-galactopyranosyl-(1→5)-β-d -apiofuranosyl-(1→4)-β-d -xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester. | Roots | [26] | |
3-O-β-D-gluco-pyranosyl presenegenin 28-O-α-L-rhamnopyranosyl- (1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-α-L-rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl-(1→4)-α-L -rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-glucopyranosyl-(1→3) -β-D -xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester. | Roots | [18] | |
3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-xylopyranosyl -(1→4)-α-L -rhamnopyranosyl-(1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-galactopyranosyl-(1→4)-β-D -xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D-galactopyranosyl-(1→4)-β -D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3, 4-di-O-acetyl)-β-D -fucopyranosyl ester; 3-O-β-D-glucopyranosyl presenegenin 28-O-β-D -galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-[(5-O-acetyl)-β-D-apiofuranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→2)-(3, 4-di-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D -xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D-galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D -xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-(4-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D -galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-[β-D-apiofuranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→2)-(3, 4-di-O-acetyl)-β-D-fucopyranosyl ester; 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegenin 28-O-β-D -galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-[(5-O-acetyl)-β-D-apiofuranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→2)-(3, 4-di-O-acetyl)-β-D -fucopyranosyl ester. | Roots | [27] | |
Flavones | 3-hydroxy-1, 2, 7-trimethoxyxanthone. | Roots | [26] |
1, 7-dimethoxy-2, 3-methylenedioxyxanthone. | Roots | [23] | |
1, 3-dihydroxy xanthone; 1-methoxy-2, 3-methylenedioxy-xanthone. | Roots | [28] | |
24-ethyl-7, (E) 22-cholestadien-3-one; 1, 8-dihydroxy-2, 7-dimethoxyxanthone. | Roots | [29] | |
1, 3-dihydroxy-2-methoxyxanthone; 1, 3, 6-trihydroxy-2, 7-dimethoxyxanthone. | Root & stem | [30] | |
3-hydroxy-1, 4-dimethoxyxanthone; 1, 7-dihydroxy-2, 3- methylenedioxyxanthone. | Roots | [31] | |
1-hydroxy-2, 4-dimethoxyxanthone; 1, 2, 3-trimethoxyxanthone; 6-hydroxy-1-methy-oxy-2, 3-methylenedioxyxanthone. | Roots | [21] | |
1-methoxy-2, 3-methylenedioxyxanthone; 3-hydroxy-1, 2-dimethoxyxanthone; 1, 6, 7-trihydroxy-2, 3-dimethoxyxanthone; 1, 3, 7-trihydroxy-2-methoxyxanthone; 7-hydroxy-1-methoxy-2, 3-methylenedioxyxanthone. | Roots | [2] | |
Sterols | β-sitosterol; stigmas terol. | Roots | [21] |
stigmasta-7; 22-dien-3-ol. | Roots | [24] | |
24-ethyl-7, (E) 22-cholestadien-3-ol. | Roots | [29] | |
1-O-β-D-glucopyranosyl- (2S,3S,4R,8E)-2-[(2′R)-2′-hydroxypalmitoyl-amino]-8 -octadecene-1,3,4-triol; 1-O-β-D- glucopyranosyl-(2S,3S,4R,8E)-2-[(2′R)-2′ -hydroxytetra-cosanamino] -8-octadecene-1,3,4-triol. | Roots | [29] | |
24-ethyl-7, (E) 22cholestadien-3-ol. | Roots | [28] | |
Polysaccharides | Sucrose. | Roots | [26] |
arilloside A. | Roots | [18] | |
aralia cerebroside. | Roots | [24] | |
3-O-[4-O-(α-L-rhamnopyranosyl)-feruloyl]-β-D- fructofuranosyl-(2→1)-(4,6-di-O -benzoyl)-α-D-glucopyranoside. | Roots | [29] | |
kaempferol 3-O-β-D-glucopyranoside; kaempferol 3-O-(2′′-O-β-D-apiofuranosyl -β-D-glucopyranoside). | Leaves | [19] | |
tenuifoliside C; β-D-(3-O-sinapoyl)-fructofuranosyl-α-D-(6-O-sinapoyl)-glucopyranoside; β-D-[3-O-(3,4,5-trimethoxycinnamoyl)]-fructofuranosyl-α-D-[6-O-(4-methoxybenzoyl)]-glucopyranoside. | Roots | [32] | |
Oligosaccharide polyester | methyl-protocatechuate. | Roots | [28] |
polygalolide A; polygalolide B. | Root & stem | [33] | |
n-hexadecane acid monoglyceride. | Roots | [29] | |
1-O-(E)-p-coumaroyl-(3-O-benzoyl)-β-d-fructofuranosyl-(21)-[6-O-(E) -feruloyl-β-d-glucopyranosyl-(12)]-[6-O-acetyl-β-d-glucopyranosyl-(13)-(4-O-acetyl)-β-d-glucopyranosyl-(13)]-4-O-[4-O-α-l-rhamnopyranosyl -(E)-p-coumaroyl]-α-d-glucopyranoside. | Roots | [26] | |
3-O-{4-O-[β-d-glucopyranosyl-(14 -α-l- rhamnopyranosyl]-feruloyl}-β-d -fructofuranosyl- (21)-(4,6-di-O-benzoyl-α-d-glucopyranoside; 3-O-{4-O-[β- d-gluocopyranosyl-(13) -(2-O-acetyl-α-l-rhamnopyranosyl]-feruloyl}-β-d -fructofuranosyl-(21)-(4,6-di-O- benzoyl-α-d-glucopyranoside; l-O-p-coumaroyl-(3-O-benzoyl-β-d-fructofuranosyl-(21)-[β-d-glucopyranosyl- (12)-[6-O-acetyl-β-d-glucopyranosyl-(13)-(4-O-p-coumaroyl)-α-d -glucopyranoside; l-O-p-coumaroyl- (3-O-benzoyl)-β-d-fructofuranosyl-(21)-[β-d-glucopyranosyl-(12)]-[6-O-acetyl-β-d-glucopyranosyl-(13)]- (4-O-feruloyl)-α-d-glucopyranoside; 1-O-feruloyl-(3-O-benzoyl-β-d-fructofuranosyl-(21)-[β-d-glucopyranosyl- (12)]-[β-d-glucopyranosyl-(13)-(6-O-acetyl)-β-d-glucopyranosyl-(13)]-(6-O-feruloyl)-α-D-glucopyranoside; reiniose D; senegose G; tenuifolioses C; tenuifolioses P. | Roots | [34] | |
Organic acids | palmitic acid; p-hydroxybenzoic acid. | Roots | [28] |
3-O-β-D-glucopyranosyl senegenic acid; sinapinic acid; ferulic acid. | Roots | [23] | |
benzoic acid; 3,4-dimethoxycinnamic acid; 3, 3′, 4, 4′-tetramethoxy-ε-truxillic acid. | Leaves | [19] | |
Others | p-hydroxybenzalde. | Roots | [28] |
Pharmacological Efficacy | Clinical Trail Study | Key Pharmacological Active Substances | Reference |
---|---|---|---|
Hypolipidemic effect | The extracts reduce cholesterol triglycerides, and lipoproteins in blood. | Saponins | [41,42] |
Blood-activating and stasis-eliminating effects | The extracts reduce blood viscosity and improve blood circulation and extend the coagulation time. | Saponins | [43,44] |
Hepatic-protective effects | The extracts can treat acute liver injury, protect alcoholic fatty liver, improve pathological damage of liver tissue, inhibit hepatitis B virus surface antigen, and inhibit the proliferation and apoptosis of human hepatoma cell. | Saponins | [5,38] |
Immunity-boosting function | The extracts increase immunity organ such as avoirdupois and thymus gland index of mice. | Saponins, polysaccharides | [40,45] |
Antitumor | The isolated flavones show tumor cytotoxic activity. | Flavones | [37] |
Anti-inflammatory effects | The extracts inhibit the increase of vascular permeability caused by inflammatory mediators and inflammatory reactions and inhibit the immune inflammatory process. | Flavones | [42,43,46] |
Antivirus effect | The extracts inhibit the activity of herpes simplex virus type I and coxsackie B3 virus | Flavones | [28] |
Treatment of endometriosis | The total flavones reduce the viability, migration, and invasion, and increase the apoptosis rate, in human ectopic endometrial stromal cells. | Flavones | [35] |
Antioxidative effect | The extracts can eliminate hydroxyl radicals and superoxide anions. | Flavones, polysaccharides | [47,48] |
Ameliorate perimenopausal syndrome | The extracts effectively improve the levels of serum sex hormones and β-EP in rats and relieve the related symptoms with a certain dose-effect relationship. | Extract compound | [36] |
Ameliorate diabetic nephropathy | The extracts slow the progression of diabetic nephropathy by inhibiting excessive cell proliferation, extracellular matrix accumulation, and apoptosis. | Extract compound | [3] |
Objective | Culture Medium | Reference |
---|---|---|
Shoot organogenesis from hypocotyl or stem segment explants | MS + BAP (2.0 mg L−1) + NAA (0.05 mg L−1) | [53] |
Explant and callus induction media | 1/2 MS + NAA (0.1 mg L−1) + BA (2.0 mg L−1) | [54] |
Culture medium scheme for P. fallax proliferation | MS + BAP (1.5 mg L−1) + NAA (0.05 mg L−1) | [56] |
Culture medium scheme for P. fallax rooting | 1/2 MS + IBA (0.1 mg L−1) + NAA (0.3 mg L−1) + activated carbon (0.2 g L−1) | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Zhang, X.; Liu, B.; Tang, H. Research Progress on the Medicinal and Edible Polygala fallax Hemsl. (Polygalaceae) Plant. Horticulturae 2023, 9, 737. https://doi.org/10.3390/horticulturae9070737
Wu C, Zhang X, Liu B, Tang H. Research Progress on the Medicinal and Edible Polygala fallax Hemsl. (Polygalaceae) Plant. Horticulturae. 2023; 9(7):737. https://doi.org/10.3390/horticulturae9070737
Chicago/Turabian StyleWu, Chao, Xiujiao Zhang, Baoyu Liu, and Hui Tang. 2023. "Research Progress on the Medicinal and Edible Polygala fallax Hemsl. (Polygalaceae) Plant" Horticulturae 9, no. 7: 737. https://doi.org/10.3390/horticulturae9070737
APA StyleWu, C., Zhang, X., Liu, B., & Tang, H. (2023). Research Progress on the Medicinal and Edible Polygala fallax Hemsl. (Polygalaceae) Plant. Horticulturae, 9(7), 737. https://doi.org/10.3390/horticulturae9070737