Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Details
2.2. Nanobiochar Foliar Application
2.3. Nanobiochar Characterization
2.4. Growth Parameters
2.5. Curd Architecture and Yield
2.6. Biochemical Traits
2.6.1. Pigments in the Leaves and Curd
2.6.2. Primary Metabolites Determination
- a.
- Total Free Amino Acids
- b.
- Total soluble proteins
- c.
- Total sugars and reducing and non-reducing sugars
- d.
- Phenolics
- e.
- Flavonoids
2.7. Nutrients Analysis
2.8. Statistical Analyses
3. Results
3.1. Morphological Indices
3.2. Curd Weight and Architecture
3.3. Pigments
3.4. Total Sugar, Reducing and Non-Reducing Sugars in Leaf and Curd
3.5. Amino Acids, Proteins, Flavonoids, and Phenolic Content in Leaf and Curd
3.6. Nutrient Contents (N, P, K, and Ca) in Leaf and Curd
4. Discussion
4.1. Nanobiochar and Mulching Promote Root Growth and Crop WUE
4.2. Organo-Mineral Particles in NBC Improve Photosynthetic Activity
4.3. NBC Mediated Positive Regulation of Plant Metabolism and Photo-Assimilate Transport
4.4. Positive Regulation of Plant Mineral Nutrition
4.5. Enhancement in Yield and Architectural Traits through Synergistic Effects of NBC and Mulching
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility—A review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Chandini; Kumar, R.; Kumar, R.; Prakash, O. The impact of chemical fertilizers on our environment and ecosystem. In Research Trends in Environmental Sciences, 2nd ed.; Sharma, P., Ed.; Akinik Publications: Delhi, India, 2019; p. 69. [Google Scholar]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar]
- Simpson, D.; Arneth, A.; Mills, G.; Solberg, S.; Uddling, J. Ozone—The persistent menace: Interactions with the N cycle and climate change. Current Opin. Environ. Sustain. 2014, 9, 9–19. [Google Scholar]
- FAO. Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; Food and Agricultural Organization of the United Nations: Rome, Italy, 2011; Available online: http://www.fao.org/docrep/014/i2215e/i2215e.pdf (accessed on 5 May 2023).
- Xie, L.; Li, L.; Xie, J.; Wang, J.; Anwar, S.; Du, C.; Zhou, Y. Substituting inorganic fertilizers with organic amendment reduced nitrous oxide emissions by affecting nitrifiers’ microbial community. Land 2022, 11, 1702. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil. Till Res. 2016, 155, 363–370. [Google Scholar]
- Abd El-Wahed, M.H.; Baker, G.A.; Ali, M.M.; Abd El-Fattah, F.A. Effect of drip deficit irrigation and soil mulching on growth of common bean plant, water use efficiency and soil salinity. Sci. Hort. 2017, 225, 235–242. [Google Scholar]
- Sun, H.; Shao, L.; Liu, X.; Miao, W.; Chen, S.; Zhang, X. Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard. Eur. J. Agron. 2012, 43, 87–95. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil. Till 2017, 168, 155–166. [Google Scholar]
- Xie, J.; Wang, L.; Li, L.; Anwar, S.; Luo, Z.; Zechariah, E.; Kwami Fudjoe, S. Yield, economic benefit, soil water balance, and water use efficiency of intercropped maize/potato in responses to mulching practices on the semiarid loess plateau. Agriculture 2021, 11, 1100. [Google Scholar]
- Wang, L.; Li, L.; Xie, J.; Luo, Z.; Anwar, S.; Zechariah, E.; Fudjoe, S.K.; Palta, J.A.; Chen, Y. Does plastic mulching reduce water footprint in field crops in China? A meta-analysis. Agric. Water Manag. 2022, 260, 107293. [Google Scholar]
- Chen, W.; Jin, M.; Ferré, T.P.; Liu, Y.; Xian, Y.; Shan, T.; Ping, X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Res. 2018, 215, 207–221. [Google Scholar]
- Romanova, S.M.; Ponomarenko, O.I.; Matveyeva, I.V.; Beisembayeva, L.K.; Kazangapova, N.B.; Tukenova, Z.A. Evaluation of mulching technology application for cultivation of agricultural crops. J. Chem. Technol. Metall. 2019, 54, 514–521. [Google Scholar]
- Zhang, F.; Zhang, W.; Qi, J.; Li, F.M. A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. Forest Meteorol. 2018, 248, 458–468. [Google Scholar]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean Soil. Air Water 2012, 40, 1093–1098. [Google Scholar]
- Shafiq, F.; Anwar, S.; Zhang, L.; Ashraf, M. Nano-biochar: Properties and prospects for sustainable agriculture. Land Degrad. Dev. 2023, 34, 2445–2463. [Google Scholar] [CrossRef]
- Saxena, J.; Rawat, J.; Kumar, R. Conversion of biomass waste into biochar and the effect on mung bean crop production. Clean–Soil Air Water 2017, 45, 1501020. [Google Scholar]
- Ashiq, A.; Adassooriya, N.M.; Sarkar, B.; Rajapaksha, A.U.; Ok, Y.S.; Vithanage, M. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. J. Environ. Manag. 2019, 236, 428–435. [Google Scholar]
- Kumar, A.; Bhattacharya, T. Biochar: A sustainable solution. Environ. Dev. Sustain. 2021, 23, 6642–6680. [Google Scholar]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Tech. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Tripathi, S.; Sonkar, S.K.; Sarkar, S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 2011, 3, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.; Verma, N.; Khan, S. Carbon nanofibers as a micronutrient carrier in plants: Efficient translocation and controlled release of Cu nanoparticles. Environ. Sci. Nano 2017, 4, 138–148. [Google Scholar]
- Rasool, M.; Akhter, A.; Soja, G.; Haider, M.S. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 2021, 11, 6092. [Google Scholar] [PubMed]
- Mehari, Z.H.; Elad, Y.; Rav-David, D.; Graber, E.R.; Meller Harel, Y. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 2015, 395, 31–44. [Google Scholar]
- Eskandari, S.; Mohammadi, A.; Sandberg, M.; Eckstein, R.L.; Hedberg, K.; Granström, K. Hydrochar-amended substrates for production of containerized pine tree seedlings under different fertilization regimes. Agronomy 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, Y.; Feng, Y.; Qiao, J.; Zhao, H.; Xie, J.; Fang, Y.; Shen, S.; Liang, S. The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil. Sci. Rep. 2020, 10, 858. [Google Scholar]
- Kumar, A.; Joseph, S.; Graber, E.R.; Taherymoosavi, S.; Mitchell, D.R.; Munroe, P.; Tsechansky, L.; Lerdahl, O.; Aker, W.; Sæbø, M. Fertilizing behavior of extract of organomineral-activated biochar: Low-dose foliar application for promoting lettuce growth. Chem. Biol. Tech. Agric. 2021, 8, 21. [Google Scholar]
- Schmidt, H.P.; Pandit, B.H.; Cornelissen, G.; Kammann, C.I. Biochar-based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land Deg. Develop. 2017, 28, 2324–2342. [Google Scholar]
- Um-e-Laila; Hussain, A.; Nazir, A.; Shafiq, M. Potential application of biochar composite derived from rice straw and animal bones to improve plant growth. Sustainability 2021, 13, 11104. [Google Scholar]
- Das, S.K.; Ghosh, G.K. Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: A step towards pollution free environment. Energy 2022, 242, 122977. [Google Scholar]
- Dimkpa, C.O.; White, J.C.; Elmer, W.H.; Gardea-Torresdey, J. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem. 2017, 65, 8552–8559. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Chen, X.; Wang, Q.; Wei, W.; Zhang, T. Effects of nano carbon on soil erosion and nutrient loss in a semi-arid loess region of Northwestern China. Int. J. Agric. Biol. Eng. 2018, 11, 138–145. [Google Scholar] [CrossRef]
- Khaliq, H.; Anwar, S.; Shafiq, F.; Ashraf, M.; Zhang, L.; Haider, I.; Khan, S. Interactive effects of soil and foliar-applied nanobiochar on growth, metabolites, and nutrient composition in Daucus carota. J. Plant Growth Reg. 2022, 42, 3715–3729. [Google Scholar]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar]
- Saxena, M.; Maity, S.; Sarkar, S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv. 2014, 4, 39948–39954. [Google Scholar] [CrossRef]
- Gámiz, B.; Cox, L.; Hermosín, M.C.; Spokas, K.; Celis, R. Assessing the effect of organoclays and biochar on the fate of abscisic acid in soil. J. Agric. Food Chem. 2017, 65, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, F.; Iqbal, M.; Raza, S.H.; Akram, N.A.; Ashraf, M. Fullerenol [60] Nano-cages for protection of crops against oxidative stress: A critical review. J. Plant Growth Reg. 2022, 42, 1267–1290. [Google Scholar]
- Yang, Y.; Zhou, B.; Hu, Z.; Lin, H. The effects of nano-biochar on maize growth in northern Shaanxi Province on the Loess Plateau. Appl. Ecol. Environ. Res. 2020, 18, 2863–2877. [Google Scholar]
- Ramzan, M.; Zia, A.; Naz, G.; Shahid, M.; Shah, A.A.; Farid, G. Effect of nanobiochar (nBC) on morpho-physio-biochemical responses of black cumin (Nigella sativa L.) in Cr-spiked soil. Plant. Physiol. Biochem. 2023, 196, 859–867. [Google Scholar] [PubMed]
- US EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. Revision 2; US EPA: Washington, DC, USA, 1996.
- Lan, T.H.; Paterson, A.H. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 2000, 155, 1927–1954. [Google Scholar]
- Zhao, Z.; Gu, H.; Wang, J.; Sheng, X.; Yu, H. Development and comparison of quantitative methods to evaluate the curd solidity of cauliflower. J. Food Eng. 2013, 119, 477–482. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant. Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.H. Carotenoids. In Chemistry and Biochemistry of Plant Pigments; Goodwin, T.W., Ed.; Academic Press: London, UK, 1976; pp. 38–155. [Google Scholar]
- Hamilton, P.B.; Van Slyke, D.D.; Lemish, S. The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J. Biol. Chem. 1943, 150, 231–250. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Riazi, A.; Matsuda, K.; Arslan, A. Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. J. Exp. Bot. 1985, 36, 1716–1725. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 420–428. [Google Scholar] [CrossRef]
- Krivorotova, T.; Sereikaite, J. Determination of fructan exohydrolase activity in the crude extracts of plants. Electron. J. Biotechnol. 2014, 17, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Method. 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B.A. comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil. Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Bremner, J.M.; Edwards, A.P. Determination and isotope-ratio analysis of different forms of nitrogen in soils: I. Apparatus and procedure for distillation and determination of ammonium. Soil. Sci. Soc. Am. J. 1965, 29, 504–507. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962; p. 497. [Google Scholar]
- Ristova, D.; Busch, W. Natural variation of root traits: From development to nutrient uptake. Plant Physiol. 2014, 166, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Nakamura, K. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int. Soil Water Conserv. Res. 2017, 5, 302–308. [Google Scholar] [CrossRef]
- Luo, L.; Hui, X.; He, G.; Wang, S.; Wang, Z.; Siddique, K.H. Benefits and limitations to plastic mulching and nitrogen fertilization on grain yield and sulfur nutrition: Multi-site field trials in the semiarid area of China. Front. Plant Sci. 2022, 13, 799093. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Zermeño-González, A.; Munguia-Lopez, J.; Rosario Quezada-Martín, M.A.; De La Rosa-Ibarra, M. Photosynthesis, soil temperature and yield of cucumber as affected by colored plastic mulch. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2008, 58, 372–378. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Kerré, B.; Kopittke, P.M.; Horemans, B.; Smolders, E. Biochar affects carbon composition and stability in soil: A combined spectroscopy microscopy study. Sci. Rep. 2016, 6, 25127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zheng, J.; Wang, Y.; Yang, Q.; Chen, T.; Chen, Y.; Chi, D.; Xia, G.; Siddique, K.H.M.; Wang, T. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Front. Plant Sci. 2021, 12, 650432. [Google Scholar] [CrossRef]
- Su, Y.; Ashworth, V.; Kim, C.; Adeleye, A.S.; Rolshausen, P.; Roper, C.; White, J.; Jassby, D. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci: Nano 2019, 6, 2311–2331. [Google Scholar]
- Lopez, A.B.; Van Eck, J.; Conlin, B.J.; Paolillo, D.J.; O’Neill, J.; Li, L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 2008, 59, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, N.J.; Clinton, S.K.; Erdman, J.W., Jr. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Adv. Nutr. 2011, 2, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Z.H.U.; Kong, L.J.; Shan, Y.Z.; Yao, X.D.; Zhang, H.J.; Xie, F.T.; Xue, A.O. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J. Integr. Agric. 2019, 18, 2242–2254. [Google Scholar]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechhansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Reynolds, A.; Joseph, S.D.; Verheyen, T.V.; Chinu, K.; Taherymoosavi, S.; Munroe, P.R.; Donne, S.; Pace, B.; van Zwieten, L.; Marjo, C.E.; et al. Effect of clay and iron sulphate on volatile and water extractable organic compounds in bamboo biochars. J. Anal. Appl. Pyrolysis 2018, 133, 22–29. [Google Scholar] [CrossRef]
- Taherymoosavi, S.; Joseph, S.; Pace, B.; Munroe, P. A comparison between the characteristics of single-and mixed feedstock biochars generated from wheat straw and basalt. J. Anal. Appl. Pyrolysis 2018, 129, 123–133. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Sheng, X.G.; Yu, H.F.; Wang, J.S.; Shen, Y.S.; Gu, H.H. Identification of QTLs associated with curd architecture in cauliflower. BMC Plant. Biol. 2020, 20, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metwaly, E.E. Influence of phosphorus and potassium on growth and yield of cauliflower. J. Plant Prod. 2017, 8, 329–334. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Root Length (cm) | Aboveground Fresh Biomass (g plant−1) | Root Fresh Weight (g plant−1) | Root Dry Weight (g plant−1) | Leaf Area (cm2) | |
---|---|---|---|---|---|---|---|
Main effects | |||||||
Type of mulch | NM | 26.71 a | 16.45 | 421.62 b | 21.09 | 0.40 | 74.79 |
PM | 24.34 ab | 19.19 | 555.78 a | 22.30 | 0.46 | 61.36 | |
SM | 23.53 b | 16.66 | 391.33 b | 18.33 | 0.30 | 62.69 | |
Foliar spray | Control (0% NBC) | 24.90 | 16.41 | 428.86 a | 19.71 a | 0.40 a | 64.53 a |
0.1% NBC | 24.82 | 18.46 | 483.63 a | 21.44 a | 0.37 a | 68.03 a | |
Interaction | |||||||
NM | Control | 26.54 | 15.79 | 394.47 | 21.09 | 0.423 a | 74.19 |
0.1% NBC | 26.89 | 17.11 | 448.78 | 21.11 | 0.388 ab | 75.40 | |
PM | Control | 24.62 | 18.46 | 519.78 | 20.39 | 0.454 a | 60.01 |
0.1% NBC | 24.05 | 19.93 | 591.78 | 24.22 | 0.460 a | 62.71 | |
SM | Control | 23.54 | 14.97 | 372.33 | 17.67 | 0.257 b | 59.40 |
0.1% NBC | 23.53 | 18.35 | 410.33 | 19.00 | 0.353 ab | 65.99 | |
ANOVA (F-values) | |||||||
Type of mulch (M) | 4.07 * | 3.12 ns | 6.81 ** | 1.82 ns | 5.47 ns | 3.25 ns | |
Foliar spray (NBC) | 0.01 ns | 4.26 ns | 2.00 ns | 0.99 ns | 0.35 ns | 0.55 ns | |
M × NBC | 0.08 ns | 0.44 ns | 0.06 ns | 0.41 ns | 1.05 * | 0.11 ns |
Treatments | Curd Weight (g plant−1) | Curd Diameter (cm) | Basal Diameter (cm) | Stalk Length (cm) | Stalk Angle (°) | RSI (g cm−2) | |
---|---|---|---|---|---|---|---|
Main effects | |||||||
Type of mulch | NM | 147.5 | 9.34 | 12.3 | 5.70 | 0.53 | 11.7 |
PM | 170.2 | 9.15 | 12.5 | 5.40 | 0.53 | 13.6 | |
SM | 176.2 | 9.28 | 11.8 | 5.24 | 0.48 | 15.1 | |
Foliar spray | Control (0% NBC) | 142.9 b | 8.68 b | 11.4 b | 4.95 b | 0.51 a | 12.6 a |
0.1% NBC | 186.4 a | 9.83 a | 13.1 a | 5.94 a | 0.52 a | 14.3 a | |
Interactions | |||||||
NM | Control | 111.5 b | 8.48 | 11.3 | 5.45 | 0.525 | 9.86 b |
0.1% NBC | 183.5 a | 10.2 | 13.3 | 5.96 | 0.543 | 13.6 ab | |
PM | Control | 139.8 b | 8.92 | 12.2 | 4.38 | 0.531 | 11.5 b |
0.1% NBC | 200.6 a | 9.39 | 12.9 | 6.44 | 0.542 | 15.7 a | |
SM | Control | 177.3 a | 8.67 | 10.6 | 5.04 | 0.480 | 16.7 a |
0.1% NBC | 175.1 a | 9.90 | 13.1 | 5.45 | 0.483 | 13.5 ab | |
ANOVA (F-values) | |||||||
Type of mulch (M) | 3.54 ns | 0.06 ns | 0.56 ns | 0.38 ns | 0.80 ns | 3.56 ns | |
Foliar spray (NBC) | 21.8 *** | 6.69 * | 9.92 ** | 5.18 * | 0.07 ns | 2.53 ns | |
M × NBC | 6.14 ** | 0.68 ns | 0.92 ns | 1.50 ns | 0.01 ns | 5.63 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, N.; Anwar, S.; Shafiq, F.; Gul-e-Kainat; Ullah, K.; Zulqarnain, M.; Haider, I.; Ashraf, M. Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower. Horticulturae 2023, 9, 687. https://doi.org/10.3390/horticulturae9060687
Xue N, Anwar S, Shafiq F, Gul-e-Kainat, Ullah K, Zulqarnain M, Haider I, Ashraf M. Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower. Horticulturae. 2023; 9(6):687. https://doi.org/10.3390/horticulturae9060687
Chicago/Turabian StyleXue, Naiwen, Sumera Anwar, Fahad Shafiq, Gul-e-Kainat, Kaleem Ullah, Muhammad Zulqarnain, Imtiaz Haider, and Muhammad Ashraf. 2023. "Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower" Horticulturae 9, no. 6: 687. https://doi.org/10.3390/horticulturae9060687
APA StyleXue, N., Anwar, S., Shafiq, F., Gul-e-Kainat, Ullah, K., Zulqarnain, M., Haider, I., & Ashraf, M. (2023). Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower. Horticulturae, 9(6), 687. https://doi.org/10.3390/horticulturae9060687