In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Disinfection
2.2. Basal Nutrient Media and Culture Conditions
2.2.1. Media Composition
2.2.2. Culture Conditions
2.3. Culture Initiation and In Vitro Behavior during the First 2 Years
2.4. Long-Term Shoot Proliferation (Years 3 to 10)
2.4.1. Foliar Mineral Composition Analysis
2.4.2. Root System Morphology Analysis
2.5. Rooting
2.6. Plantlet Acclimatization
2.7. Analysis of Genetic Stability
2.7.1. Ploidy Analysis Using Flow Cytometry
2.7.2. Somaclonal Variation Analysis
2.8. Statistical Analysis
3. Results
3.1. Culture Initiation and In Vitro Behavior during the First Two Years
3.2. Long-Term Culture Assay (Years 3 to 10)
3.2.1. In Vitro Behavior
Proliferation
Elongation
Rooting
3.2.2. Foliar Mineral Composition Analysis
3.3. Rooting
3.4. Plantlet Acclimatization
3.5. Analysis of Genetic Stability: Ploidy Analysis and Morphological Evaluation of Flowers
4. Discussion
4.1. Culture Initiation and In Vitro Behavior during the First 2 Years
4.2. Long-Term Culture Assay (Years 3 to 10)
4.2.1. In Vitro Behavior
Proliferation
Elongation
Rooting
4.2.2. Foliar Mineral Composition Analysis
4.3. Rooting
4.4. Plantlet Acclimatization
4.5. Analysis of Genetic Stability: Ploidy Analysis and Morphological Evaluation of Flowers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization, United Nations, Roma. FAOSTAT Database. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 May 2022).
- Reuveni, O.; Shlesinger, D.R. Rapid vegetative propagation of papaya plants by cuttings. Acta Hortic. 1990, 275, 301–306. [Google Scholar] [CrossRef]
- Allan, P.; Clark, C.; Laing, M. Grafting papayas (Carica papaya L.). Acta Hortic. 2010, 851, 253–258. [Google Scholar] [CrossRef]
- Saker, M.M.; Bekheet, S.A.; Taha, H.S.; Reda, A.A. In vitro propagation of papaya (Carica papaya L.). Arab J. Biotech. 1999, 2, 235–244. [Google Scholar]
- Drew, R.A. Rapid clonal propagation of papaya in vitro from mature field-grown trees. HortScience 1988, 23, 609–611. [Google Scholar] [CrossRef]
- Drew, R.A. Micropropagation of Carica papaya and related species. In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 2003; Volume 75, pp. 543–564. [Google Scholar] [CrossRef]
- Yu, T.-A.; Yeh, S.-D.; Cheng, Y.-H.; Yang, J.-S. Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell Tissue Organ Cult. 2000, 61, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Panjaitan, S.B.; Aziz, M.A.; Rashid, A.A.; Saleh, N.M. In-Vitro Plantlet Regeneration from Shoot Tip of Field-grown Hermaphrodite Papaya (Carica papaya L. cv. Eksotika). Int. J. Agric. Biol. 2007, 6, 827–832. [Google Scholar]
- Litz, R.E.; Conover, R.A. Effect of sex type, season, and other factors on in vitro establishment and culture of Carica papaya L. expiants. J. Am. Soc. Hortic. Sci. 1981, 106, 792–794. [Google Scholar] [CrossRef]
- Jordan, M.; Cortes, I.; Montenegro, G. Regeneration of plantlets by embryogenesis from callus cultures of Carica candamarcensis. Plant Sci. Lett. 1983, 28, 321–326. [Google Scholar] [CrossRef]
- Fitch, M.M.M.; Manshardt, R.M.; Gonsalves, D.; Slightom, J.L. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 1993, 12, 245–249. [Google Scholar] [CrossRef]
- Magdalita, P.M.; Persley, D.M.; Godwin, I.D.; Drew, R.A.; Adkins, S.W. Screening Carica papaya × C. cauliflora hybrids for resistance to papaya ringspot virus-type P. Plant Pathol. 1997, 46, 837–841. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Khuspe, S.S.; Renukdas, N.N.; Rawal, S.K. Somatic embryogenesis and plant regeneration from immature embryo explants of papaya cv. Washington and Honey Dew. Indian J. Exp. Biol. 2003, 40, 624–627. [Google Scholar]
- Fitch, M.M. Carica papaya Papaya. In Biotechnology of Fruits and Nut Crops; Litz, R.E., Ed.; Nº 29; CAB International: Wallingford, UK, 2005; pp. 17–207. [Google Scholar] [CrossRef]
- Anandan, R.; Sudhakar, D.; Balasubramanian, P.; Gutierrez-Mora, A. In vitro somatic embryogenesis from suspension cultures of Carica papaya L. Sci. Hortic. 2012, 136, 43–49. [Google Scholar] [CrossRef]
- Anandan, R.; Deenathayalan, T.; Nukala Sumanth Kumar Deepak, K.V. An alternative in vitro plant regeneration system in papaya (Carica papaya L.) through callus derived nodular cultures. Meta Gene 2018, 17, 147–152. [Google Scholar] [CrossRef]
- Fitch, M.M.M.; Pang, S.-Z.; Slightom, J.L.; Lius, S.; Tennant, P.; Manshardt, R.M.; Gonsalves, D. Genetic Transformation in Carica papaya L. (Papaya). In Plant Protoplasts and Genetic Engineering V; Bajaj, Y.P.S., Ed.; Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1994; Volume 29. [Google Scholar] [CrossRef]
- Cai, W.; Gonsalves, C.; Tennant, P.; Fermin, G.; Souza, M., Jr.; Sarindu, N.; Jan, F.-J.; Zhu, H.-Y.; Gonsalves, D. A protocol for efficient transformation and regeneration of Carica papaya L. Vitr. Cell. Dev. Biol.-Plant 1999, 35, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Magdalita, P.M.; Laurena, A.C.; Yabut-Perez, B.M.; Zaporteza, M.M.; Tecson-Mendoza, E.M.; Villegas, V.N.; Botella, J.R. Towards transformation, regeneration and screening of papaya containing antisense ACC synthase gene. In Plant Biotechnology 2002 and Beyond; Vasil, I.K., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 323–327. [Google Scholar] [CrossRef]
- Magdalita, P.M.; Laurena, A.C.; Perea, M.T.M. Cloning and characterization of partial 1-aminicyclopropane-1-carboxilate oxidase-gene and anti-sense transformation into yellow ‘Solo’ papaya via Agrobacterium tumefaciens. J. ISSAAS Int. Soc. Southeast Asian Agric. Sci. 2013, 19, 63–76. [Google Scholar]
- Kung, Y.-J.; Bau, H.-J.; Wu, Y.-L.; Huang, C.-H.; Chen, T.-M.; Yeh, S.-D. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 2009, 99, 1312–1320. [Google Scholar] [CrossRef] [Green Version]
- Kung, Y.-J.; Yu, T.-A.; Huang, C.-H.; Wang, H.-C.; Wang, S.-L.; Yeh, S.-D. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res. 2010, 19, 621–635. [Google Scholar] [CrossRef]
- Fitch, M.M.M. Papaya ringspot virus (PRSV) resistance in papaya: Update on progress worldwide. Transgenic Plant J. 2010, 4, 16–28. [Google Scholar]
- Jia, R.; Zhao, H.; Huang, J.; Kong, H.; Zhang, Y.; Guo, J.; Huang, Q.; Guo, Y.; Wei, Q.; Zuo, J.; et al. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci. Rep. 2017, 7, 12636. [Google Scholar] [CrossRef] [Green Version]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Nebauer, S.G.; Arrillaga, I.; Segura, J. Assessments of somaclonal variation in micropropagated shoots of Cedrus: Consequences of axillary bud breaking. Tree Genet. Genomes 2005, 1, 3–10. [Google Scholar] [CrossRef]
- Jin, S.; Mushke, R.; Zhu, H.; Tu, L.; Lin, Z.; Zhang, Y.; Zhang, X. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep. 2008, 27, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Clarindo, W.R.; Carvalho CR de Araujo, F.S.; Abreu IS de Otoni, W.C. Recovering polyploid papaya in vitro regenerants as screened by Flow cytometry. Plant Cell Tissue Organ Cult. 2008, 92, 207–214. [Google Scholar] [CrossRef]
- Chaudhuri, R.K.; Jha, T.B. Conservation and Production of Ipecac (Cephaelis ipecacuanha Rich.) Plants from Long Term Shoot Cultures. Plant Tissue Cult. Biotechnol. 2008, 18, 157–164. [Google Scholar] [CrossRef]
- Al-Shara, B.; Mat Taha, R.; Rashid, K. Biotechnological methods and limitations of micropropagation in papaya (Carica papaya L.) production: A review. J. Anim. Plant Sci. 2018, 28, 1208–1226. [Google Scholar]
- da Costa, A.d.F.S.; Abreu, E.F.M.; Schmildt, E.R.; da Costa, A.N.; Schmildt, O. Advances observed in papaya tree propagation. Rev. Bras. Frutic. 2019, 41, 1–15. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Mondal, M.; Gupta, S.; Mukherjee, B.B. In vitro propagation of shoot buds of Carica papaya L. (Caricaceae) var. Honey Dew. Plant Cell Rep. 1990, 8, 609–612. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis de Suelos, III; MAPA: Madrid, Spain, 1986; 166p. [Google Scholar]
- Rose, D.A. The description of the growth of root systems. Plant Soil 1983, 75, 405–415. [Google Scholar] [CrossRef]
- Hidaka, T.; Komori, S.; Yamada, M.; Fukamachi, H. Mass-production of papaya (Carica papaya L.) cv Shahi samplings using shoot-tip culture for commercial use. S. Pac. Stud. 2008, 28, 87–95. [Google Scholar]
- Tamimi, Y.N.; Silva, J.A.; Yost, R.S.; Hue, N.V. Adequate Nutrient Levels in Soils and Plants in Hawaii (General Guide). In Agronomy & Soils; AS-3; CTAHR: Honolulu, HI, USA, 1997; 2p. [Google Scholar]
- Reuveni, O.; Shlesinger, D.R.; Lavi, U. In vitro clonal propagation of dioecious Carica papaya. Plant Cell Tissue Organ Cult. 1990, 20, 41–46. [Google Scholar] [CrossRef]
- Rajeevan, M.S.; Pandey, R.M. Propagation of papaya through tissue culture. Acta Hortic. 1983, 131, 131–140. [Google Scholar] [CrossRef]
- McCubbin, M.J.; van Staden, J.; Debergh, P. A modified technique for in vitro propagation of papaya (Carica papaya L.). S. Afr. J. Bot. 2003, 69, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Ryavalad, S.; Malabasari, T.A.; Shantappa, T.; Uppar, D.S.; Biradar, B.D.; Mantur, S.M. Micropropagation Studies in Papaya (Carica papaya L.) cv. ‘Surya’. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2362–2367. [Google Scholar] [CrossRef]
- Anandan, R.; Thirugnanakumar, S.; Sudhakar, D.; Balasubramanian, P. In vitro organogenesis and plantlet regeneration of Carica papaya L. J. Agric. Technol. 2011, 7, 1339–1348. [Google Scholar]
- Mumo, N.N.; Rimberia, F.K.; Mamati, G.E.; Kihurani, A.W. In vitro regeneration of selected Kenyan papaya (Carica papaya L.) lines through shoot tip culture. Afr. J. Biotechnol. 2013, 12, 6826–6832. Available online: https://www.ajol.info/index.php/ajb/article/view/130491 (accessed on 30 May 2022).
- Roy, P.K.; Roy, S.K.; Hakim, M.L. Propagation of papaya (Carica papaya L.) cv. Shahi through in vitro culture. Bangladesh J. Bot. 2012, 41, 191–195. [Google Scholar] [CrossRef]
- Veena, G.L.; Dinesh, M.R.; Kumar, R.A. Axillary bud culture in papaya. Bioinfolet 2015, 12, 147–149. [Google Scholar]
- Wu, K.; Zeng, S.; Chen, Z.; Duan, J. In vitro mass propagation of hermaphroditic Carica papaya cv. Meizhonghong. Pak. J. Bot. 2012, 44, 1669–1676. [Google Scholar]
- Nguyen, V.-H.; Yen, C.-R.; Hsieh, C.-H. Effects of nutritional and growth hormonal factors on in vitro regeneration of papaya (Carica papaya L. cv. Red Lady). J. Natl. Sci. Found. Sri Lanka 2018, 46, 559–568. [Google Scholar] [CrossRef]
- Pérez, L.P.; Montesinos, Y.P.; Olmedo, J.G.; Barbon Rodriguez, R.; Sánchez, R.R.; Montenegro, O.N.; Escriba, R.C.R.; Daniels, D.; Gómez-Kosky, R. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). Vitr. Cell. Dev. Biol.-Plant 2016, 52, 196–203. [Google Scholar] [CrossRef]
- Caple, A.D.; Cheah, K.T. Micropropagation of Hermaphrodite Carica papaya L. ‘Rainbow’ Seedlings via Axillary Bud Pathway. Biotechnology 2016, 12, 1–5. [Google Scholar]
- Fhaizal, M.B.; Vilasini, P.; Noorsaadah, A.R.; Norzulaani, K. Effect of carbenicillin on somatic embryos formation of papaya (Carica papaya L. var Eksotika I). Malays. J. Sci. 2006, 25, 47–54. [Google Scholar]
- Pliego-Alfaro, F.; López-Encina, C.; Barceló-Muñoz, A. Propagation of avocado rootstocks by tissue culture. S. Afr. Avocado Grow. Assoc. Yearb. 1987, 10, 36–39. [Google Scholar]
- Castillo, B.; Smith, M.A.L.; Madhavi, D.L.; Yadava, U.L. Interactions of irradiance level and iron chelate source during shoot tip culture of Carica papaya L. HortScience 1997, 32, 1120–1123. [Google Scholar] [CrossRef] [Green Version]
- Suksa-Ard, P.; Kataoka, I.; Beppu, K.; Fujime, Y.; Subhadrabandhu, S. Root Development of Tissue-Cultured Papaya Shoots in Several Rooting Substrates. Environ. Control Biol. 1998, 36, 115–120. [Google Scholar] [CrossRef]
- Drew, R.A. The effects of medium composition and cultural conditions on in vitro root initiation and growth of papaya (Carica papaya L.). J. Hortic. Sci. 1987, 62, 551–556. [Google Scholar] [CrossRef]
- Kataoka, I.; Inoue, H. Studies on the clonal propagation for tropical and subtropical fruit trees by tissue culture. In In Vitro Propagation of Papaya; Technical Bulletin of Faculty of Agriculture, Kagawa University: Kagawa, Japan, 1987; Volume 38, pp. 7–10. [Google Scholar]
- Teo, C.K.H.; Chan, L.K. The effects of agar content, nutrient concentration, genotype and light intensity on the in vitro rooting of papaya microcuttings. J. Hortic. Sci. 1994, 62, 267–273. [Google Scholar] [CrossRef]
- Setargie, A.; Mekbib, F.; Abraha, E. In vitro propagation of papaya (Carica papaya L.). World J. Agric. Res. 2015, 11, 84–88. Available online: https://www.idosi.org/wjas/wjas11(2)15/4.pdf (accessed on 30 May 2022).
Medium | No. of Axillary Shoots | Length of Axillary Shoots (cm) | No. of Leaves | No. of Roots | Length of Roots (cm) | Rooting (%) |
---|---|---|---|---|---|---|
Control 1 | 1.4 ± 0.4 c | 0.7 ± 0.1 c | 0.6 ± 0.1 d | 0.6 ± 0.1 c | 1.2 ± 0.2 c | 23.0 ± 14.5 c |
Control 2 | 0.7 ± 0.3 c | 0.8 ± 0.1 c | 0.3 ± 0.1 d | 0.9 ± 0.4 b | 0.6 ± 0.2 d | 15.9 ± 6.1 c |
PPRM | 24.4 ± 2.9 a | 3.2 ± 0.2 b | 4.1 ± 0.2 b | 1.2 ± 0.3 b | 3.1 ± 0.4 a | 69.6 ± 7.2 a |
PELM | 12.3 ± 2.5 b | 4.1 ± 0.3 a | 5.9 ± 0.3 a | 0.5 ± 0.2 c | 2.6 ± 0.2 b | 38.3 ± 5.0 b |
PROM | 2.0 ± 0.3 c | 0.7 ± 0.1 c | 3.0 ± 0.4 c | 1.9 ± 0.3 a | 2.7 ± 0.3 b | 74.8 ± 3.9 a |
Culture Medium | Root Number | Root Length (cm) | ||||
---|---|---|---|---|---|---|
First Order | Second Order | Third Order | First Order | Second Order | Third Order | |
PPRM | 4.0 ± 0.7 a | 5.6 ± 0.5 a | 2.4 ± 0.5 a | 4.0 ± 0.7 b | 3.0 ± 0.5 a | 0.8 ± 0.4 ab |
PELM | 2.0 ± 0.0 b | 1.4 ± 0.5 c | 0.6 ± 0.5 b | 3.0 ± 0.7 b | 1.6 ± 0.5 b | 0.4 ± 0.5 b |
PROM | 4.0 ± 1.0 a | 4.0 ± 0.0 b | 1.8 ± 0.8 a | 6.6 ± 0.5 a | 3.6 ± 0.5 a | 1.6 ± 0.5 a |
Type of Papaya Leaves | |||
---|---|---|---|
Mineral | Chlorotic In Vitro Leaves | Nonchlorotic In Vitro Leaves | In Vivo Leaves |
N (%) | 5.2 | 5.5 | 1.0–2.5 |
P (%) | 0.3 | 0.3 | 0.2–0.4 |
K (%) | 2.6 | 3.2 | 3.0–5.0 |
Ca (%) | 0.4 | 0.7 | 1.0–3.0 |
Mg (%) | 0.2 | 0.3 | 0.4–1.2 |
Na (%) | <0.1 | <0.1 | <0.2 |
Fe (ppm) | 38.0 | 113.0 | 25–100 |
Mn (ppm) | 87.0 | 71.0 | 20–150 |
Zn (ppm) | 31.0 | 176.0 | 15–40 |
Cu (ppm) | 1.0 | 3.0 | 4–10 |
B (ppm) | 46.0 | 34.0 | 20–50 |
Culture Medium | Survival Rate (%) | Average Shoot Length (cm) | Leaf No. |
---|---|---|---|
PPRM | 90 ± 10 a | 20.5 ± 1.2 a | 19.2 ± 2.0 a |
PELM | 90 ± 10 a | 11.1 ± 0.7 b | 11.3 ± 1.5 b |
PROM | 90 ± 10 a | 17.9 ± 1.2 c | 17.5 ± 2.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encina, C.L.; Granero, M.L.; Regalado, J.J. In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo). Horticulturae 2023, 9, 671. https://doi.org/10.3390/horticulturae9060671
Encina CL, Granero ML, Regalado JJ. In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo). Horticulturae. 2023; 9(6):671. https://doi.org/10.3390/horticulturae9060671
Chicago/Turabian StyleEncina, Carlos López, Manuel Lopez Granero, and José Javier Regalado. 2023. "In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo)" Horticulturae 9, no. 6: 671. https://doi.org/10.3390/horticulturae9060671
APA StyleEncina, C. L., Granero, M. L., & Regalado, J. J. (2023). In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo). Horticulturae, 9(6), 671. https://doi.org/10.3390/horticulturae9060671