Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia
Abstract
:1. Introduction
- (1)
- The effects of drip irrigation and polyethylene mulch on the yield and quality of bulb onion cultivation in the dry Caribbean region of Colombia.
- (2)
- The water footprint of bulb onion cultivation and water productivity.
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Growing Conditions
2.4. Irrigation Water Application
2.5. Canopy Traits and Yield
2.6. Bulb Quality Attributes
2.7. Estimation of Water Productivity Indices
2.8. Water-Yield Production Function
2.9. Statistical Analysis
3. Results
3.1. Effects of Different Amounts of Irrigation and Mulch on Onion Growth Parameters
3.2. Yield and Quality of Onion Bulbs
3.3. Relationship between Water Productivity and Water Regimes
3.4. Water Productivity Function of Onion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casella, A.A.; Orden, L.; Pezzola, N.A.; Bellaccomo, C.; Winschel, C.; Caballero, G.G.; Delegido, J.; Navas-Gracia, L.M.; Verrelst, J. Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations. Agronomy 2022, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Alabi, K.P.; Olaniyan, A.M.; Odewole, M.M. Characteristics of onion under different process pretreatments and different drying conditions. J. Food Process. Technol. 2013, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Sagar, N.A.; Pareek, S.; Benkeblia, N.; Sarker, S.D. Onion (Allium cepa L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. Food Front. 2022, 3, 380–412. [Google Scholar] [CrossRef]
- Bagali, A.N.; Patil, H.B.; Chimmad, V.P.; Patil, P.S.; Patil, R. Effect of inorganics and organics on growth and yield of onion (Allium cepa L.). Karnataka J. Agric. Sci. 2012, 25, 112–115. Available online: https://www.cabdirect.org/cabdirect/abstract/20123142857 (accessed on 2 February 2023).
- Barrales-Heredia, S.M.; Grimaldo-Juárez, O.; Suárez-Hernández, Á.M.; González-Vega, R.I.; Díaz-Ramírez, J.; García-López, A.M.; Soto-Ortiz, R.; González-Mendoza, D.; Iturralde-García, R.D.; Dórame-Miranda, R.F.; et al. Effects of Different Irrigation Regimes and Nitrogen Fertilization on the Physicochemical and Bioactive Characteristics of onion (Allium cepa L.). Horticulturae 2023, 9, 344. [Google Scholar] [CrossRef]
- Wakchaure, G.; Minhas, P.S.; Kumar, S.; Khapte, P.S.; Meena, K.K.; Rane, J.; Pathak, H. Quantification of water stress impacts on canopy traits, yield, quality and water productivity of onion (Allium cepa L.) cultivars in a shallow basaltic soil of water scarce zone. Agric. Water Manag. 2021, 249, 106824. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Crops and Livestock Products (FAOSTAT). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 April 2023).
- Sagar, N.A.; Pareek, S. Antimicrobial assessment of polyphenolic extracts from onion (Allium cepa L.) skin of fifteen cultivars by sonication-assisted extraction method. Heliyon 2020, 6, e05478. [Google Scholar] [CrossRef]
- Solouki, A.; Berna-Sicilia, J.Á.; Martinez-Alonso, A.; Ortiz-Delvasto, N.; Bárzana, G.; Carvajal, M. Onion plants (Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins. Heliyon 2023, 9, e13815. [Google Scholar] [CrossRef]
- Yoo, K.S.; Leskovar, D.I.; Patil, B.S.; Lee, E. Effects of leaf cutting on bulb weight and pungency of short-day onions after lifting the plants. Sci. Hortic. 2019, 257, 108720. [Google Scholar] [CrossRef]
- Yoo, K.S.; Pike, L.M.; Patil, B.S.; Lee, E. Developing sweet onions by recurrent selection in a short-day onion breeding program. Sci. Hortic. 2020, 266, 109269. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development of the Government of Colombia. Estrategia de Ordenamiento de la Producción Cadena Productiva de la Cebolla de Bulbo. Bogotá, Colombia, 2019. Available online: https://sioc.minagricultura.gov.co/DocumentosContexto/S3707-20200602%20Plan%20OP%20Cebolla%20de%20bulbo.pdf (accessed on 2 February 2023).
- National Administrative Department of Statistics (DANE). El Cultivo de la Cebolla de Bulbo (Allium cepa L.) y un Estudio de caso de los costos de Producción en el Municipio de Tibasosa (Boyacá). 2017. Available online: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_jul_2017.pdf (accessed on 2 February 2023).
- Trade Map. Trade Statistics for International Business Development. Monthly, Quarterly and Yearly Trade Data. Import & Export Values, Volumes, Growth Rates, Market Share. Available online: https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=3%7c170%7c%7c%7c%7c0703%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c2%7c1%7c1 (accessed on 9 April 2023).
- Ministry of Agriculture and Rural Development of the Government of Colombia. AGRONET. Agricultural Statistics. Bogotá, Colombia, 2023. Available online: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (accessed on 9 April 2023).
- Agricultural Rural Planning Unit of the Government of Colombia (UPRA). Zonificación de Aptitud para el Cultivo Comercial de la Cebolla de Bulbo en Colombia, a Escala 1:100.000. Bogotá D.C., Colombia, 2018. Available online: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Zonificaci-n-de-aptitud-para-el-cultivo-comercial-/nxvg-ufyf/data (accessed on 10 February 2022).
- Gökçe, Z.N.Ö.; Gökçe, A.F.; Junaid, M.; Chaudhry, U.K. Morphological, physiological, and biochemical responses of onion (Allium cepa L.) breeding lines to single and combined salt and drought stresses. Euphytica 2022, 218, 29. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A. Yield Response to Water; FAO Irrigation; Drainage Paper No. 33; Pergamon Press: Oxford, UK, 1986; Available online: https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Yield+Response+to+Water.+FAO+Irrigation%3B+Drainage+Paper+No.+33&btnG= (accessed on 10 April 2023).
- Ortolá, M.P.; Knox, J.W. Water relations and irrigation requirements of onion (Allium cepa L.): A review of yield and quality impacts. Exp. Agric. 2015, 51, 210–231. [Google Scholar] [CrossRef]
- Pérez-Ortolá, M.; Daccache, A.; Hess, T.; Knox, J.W. Simulating impacts of irrigation heterogeneity on onion (Allium cepa L.) yield in a humid climate. Irrig. Sci. 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Tao, R.; Wakelin, S.A.; Liang, Y.; Hu, B.; Chu, G. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Sci. Total Environ. 2018, 612, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yan, G.; Wang, R.; Zheng, X.; Liu, C.; Butterbach-Bahl, K. Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmos. Environ. 2019, 212, 183–193. [Google Scholar] [CrossRef]
- Lv, H.; Lin, S.C.; Wang, Y.; Lian, X.; Zhao, Y.; Li, Y.; Du, J.; Wang, Z.; Wang, J.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Piri, H.; Naserin, A. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Sci. Hortic. 2020, 268, 109361. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Rady, M.Y.; Marey, R.A.; El-Mageed, T.A.A. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 2020, 272, 109580. [Google Scholar] [CrossRef]
- Ibrahim, H.A.H.; Abdalla, A.; Salem, W. Efficacy of irrigation intervals and chemical weed control on optimizing bulb yield and quality of onion (Allium cepa L.). Bragantia 2022, 81, e1722. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Quan, H.; Zhang, F.; Fan, J.; Feng, H.; Cheng, M.; Liao, Z.; Wang, X.; Xiang, Y. Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis. Agric. Water Manag. 2022, 269, 107645. [Google Scholar] [CrossRef]
- Igbadun, H.E.; Ramalan, A.; Oiganji, E. Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria. Agric. Water Manag. 2012, 109, 162–169. [Google Scholar] [CrossRef]
- Sarkar, M.D.; Solaiman, A.H.M.; Jahan, M.S.; Rojoni, R.N.; Kabir, K.; Hasanuzzaman, M. Soil parameters, onion growth, physiology, biochemical and mineral nutrient composition in response to colored polythene film mulches. Ann. Agric. Sci. 2019, 64, 63–70. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Thakur, M.; Kumar, R. Mulching: Boosting crop productivity and improving soil environment in herbal plants. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100287. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Tan, C.; Wang, X.; Xia, M. Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes. Sustainability 2021, 13, 11026. [Google Scholar] [CrossRef]
- Terán-Chaves, C.A.; Duarte-Carvajalino, J.M.; Polo-Murcia, S. Quality control and filling of daily temperature and precipitation time series in Colombia. Meteorol. Z. 2021, 30, 489–501. [Google Scholar] [CrossRef]
- North Carolina Farms INC. Onion Yellow Granex Seedling Tray. Available online: https://ncfarmsinc.com/rooted-plugs/Onion-Yellow-Granex#:~:text=For%20best%20results%20with%20Onion,see%20Thrips%20and%20Onion%20Maggots (accessed on 23 May 2023).
- Da Silva, A.L.B.R.; Rodrigues, C.; Dunn, L.; Cavender, G.; Coolong, T. Fertilizer Nitrogen Application for Short-Day Onion Production: From Field to Table. Horticulturae 2022, 8, 847. [Google Scholar] [CrossRef]
- Abdissa, Y.; Tekalign, T.; Pant, L.M. Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol I. growth attributes, biomass production and bulb yield. Afr. J. Agric. Res. 2011, 6, 3252–3258. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G.; Wang, J.; Huang, Q.; Pereira, L.S.; Xu, X.; Liu, H. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrig. Sci. 2013, 31, 995–1008. [Google Scholar] [CrossRef]
- Kumawat, L.; Raheman, H. Determination of engineering properties of onion crop required for designing an onion harvester. Cogent Eng. 2023, 10, 2191404. [Google Scholar] [CrossRef]
- Dabhi, M.N.; Patel, N.K. Physical and Mechanical Properties of Talaja Red Onion Cultivar. Bioprocess Eng. 2017, 1, 110. [Google Scholar] [CrossRef]
- Brar, H.S.; Singh, P. Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India. Agric. Water Manag. 2022, 274, 107982. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.Y.; Vila, M.G.; Moreno, P.I. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hisao, T.; Fereres, E. Reference Manual, Chapter 3-Calculation Procedures AquaCrop, Version 7.0; Food and Agriculture Organization of the United Nations, Land and Water Division: Rome, Italy, 2022; pp. 111–119. Available online: https://www.fao.org/3/br248e/br248e.pdf (accessed on 2 January 2022).
- Li, F.; Song, C.; Li, H. The effects of the CO2 database on a localized AquaCrop model construction based on a field experiment. Irrig. Drain. 2023, 72, 569–583. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A.Y. The green, blue, and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Pellicer-Martínez, F.; Paz, J.M.M. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Sci. Total Environ. 2016, 571, 561–574. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Hornbuckle, J.; Turchini, G.M. Blue–green water utilization in rice–fish cultivation towards sustainable food production. AMBIO 2022, 51, 1933–1948. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: Oxfordshire, UK, 2011; Available online: https://scholar.google.com/scholar_lookup?title=The%20Water%20Footprint%20Assessment%20Manual%3A%20Setting%20the%20Global%20Standard&publication_year=2011&author=A.Y.%20Hoekstra&author=A.K.%20Chapagain&author=M.M.%20Aldaya&author=M.M.%20Mekonnen (accessed on 4 April 2023).
- Sarkar, S.; Goswami, S.; Mallick, S.S.; Nanda, M.K. Different indices to characterize water use pattern of micro-sprinkler irrigated onion (Allium cepa L.). Agric. Water Manag. 2008, 95, 625–632. [Google Scholar] [CrossRef]
- Job, M.; Bhakar, S.R.; Singh, P.K.; Tiwari, G.S.; Sharma, R.K.; Lakhawat, S.S.; Sharma, D. Evaluation of plastic mulch for changes in mechanical properties during onion cultivation. Int. J. Sci. Environ. Technol. 2016, 5, 575–584. Available online: https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Evaluation+of+plastic+mulch+for+changes+in+mechanical+properties+during+onion+cultivation&btnG= (accessed on 4 April 2023).
- Shanono, N.; Abba, B.S.; Nasidi, N.M. Evaluation of Aqua-Crop Model using Onion Crop under Deficit Irrigation and Mulch in Semi-arid Nigeria. Turk. J. Agr. Eng. Res. 2022, 3, 131–145. [Google Scholar] [CrossRef]
- Kumar, S.; Imtiyaz, M.; Kumar, A.; Singh, R. Response of onion (Allium cepa L.) to different levels of irrigation water. Agric. Water Manag. 2007, 89, 161–166. [Google Scholar] [CrossRef]
- Channagoudra, R.F.; Prabhudeva, A.; Kamble, A. Response of onion (Allium cepa L.) to different levels of irrigation and sulphur in alfisols of northern transitional tract of Karnataka. Asian J. Hortic. 2009, 4, 152–155. Available online: http://www.connectjournals.com/file_html_pdf/611501H_149-151a.pdf (accessed on 2 February 2023).
- Enciso, J.; Wiedenfeld, B.; Jifon, J.L.; Nelson, S.D. Onion yield and quality response to two irrigation scheduling strategies. Sci. Hort. 2009, 120, 301–305. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Regulated Deficit Irrigation as a Water-Saving Strategy for Onion Cultivation in Mediterranean Conditions. Agronomy 2019, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Leskovar, D.I.; Agehara, S.; Yoo, K.; Pascual-Seva, N. Crop Coefficient-based Deficit Irrigation and Planting Density for Onion: Growth, Yield, and Bulb Quality. Hortscience 2012, 47, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Martín de Santa Olalla, F.; Domínguez-Padilla, A.; López, R. Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agric. Water Manag. 2004, 68, 77–89. [Google Scholar] [CrossRef]
- Ramalan, A.; Nega, H.; Oyebode, M.O. Effect of deficit irrigation and mulch on water use and yield of drip irrigated onions. Ecol. Environ. 2010, 134, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Nyathi, M.; Mabhaudhi, T.; Van Halsema, G.; Annandale, J.G.; Struik, P.C. Benchmarking nutritional water productivity of twenty vegetables—A review. Agric. Water Manag. 2019, 221, 248–259. [Google Scholar] [CrossRef]
- Wakchaure, G.; Minhas, P.S.; Kumar, S.; Khapte, P.S.; Rane, J.; Reddy, K.S. Bulb productivity and quality of monsoon onion (Allium cepa L.) as affected by transient waterlogging at different growth stages and its alleviation with plant growth regulators. Agric. Water Manag. 2023, 278, 108136. [Google Scholar] [CrossRef]
- Mubarak, I.; Hamdan, A. Onion Crop Response to Regulated Deficit Irrigation under Mulching in Dry Mediterranean Region. Hortic. Res. 2018, 26, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Al-Gaadi, K.A.; Madugundu, R.; Tola, E.; El-Hendawy, S.; Marey, S. Satellite-Based Determination of the Water Footprint of Carrots and Onions Grown in the Arid Climate of Saudi Arabia. Remote Sens. 2022, 14, 5962. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Asgharipour, M.R.; Khoshnevisan, B. Water footprint and life cycle assessment of edible onion production—A case study in Iran. Sci. Hortic. 2020, 261, 108925. [Google Scholar] [CrossRef]
Soil Property | Value |
---|---|
Soil texture | Sandy loam |
Bulk density | 1.58 ± 0.05 g cm−3 |
pH | 6.30 ± 0.42 |
Field capacity soil moisture | 19.1 ± 1.6% |
Wilting point soil moisture (θw) | 10.3 ± 0.3% |
Soil organic matter | 1.53 ± 0.13 g kg−1 |
Available nitrogen | 1280 ± 5.62 mg kg−1 |
Available phosphorus | 216 ± 0.82 mg kg−1 |
Available potassium | 176.30 ± 3.79 mg kg−1 |
Available sulfur | 3.66 ± 0.9 mg kg−1 |
Growth Parameter | Days |
---|---|
Sowing to emergence | 11 |
Emergence to transplant | 35 |
Transplant to leaf development stage | 10 |
Transplant to vegetative phase | 30 |
Transplant to start of bulbing stage | 40 |
Transplant to maximum root depth | 77 |
Transplant to maximum canopy cover | 79 |
Transplant to maturity | 85 |
Transplant to start of senescence | 90 |
Transplant to harvesting | 92 |
Treatment | Bulb Weight (g) | Polar Diameter (mm) | Equatorial Diameter (mm) | TSS (Degrees Brix) |
---|---|---|---|---|
T1 | 78.1 a | 53.7 a | 64.3 a | 6.65 a |
T2 | 75.6 a | 50.7 ab | 59.5 a | 6.74 a |
T3 | 71.0 ab | 47.4 bc | 44.6 b | 6.82 a |
T4 | 57.9 ab | 46.2 bc | 39.0 bc | 7.76 a |
T5 | 48.9 b | 45.2 c | 32.7 c | 7.83 a |
Treatment | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
IW (mm) | 1499.52 a | 1330.17 b | 1293.23 c | 821.77 d | 525.17 e |
sd (mm) | 6.5 | 0.5 | 0.5 | 0.4 | 4.6 |
ET act (mm) | 96.13 a | 91.59 ab | 71.3 c | 65.32 cd | 61.39 e |
sd (mm) | 1.5 | 1.3 | 1.5 | 1.8 | 1.7 |
Tr (mm) | 76.23 a | 74.15 b | 54.24 c | 48.63 d | 44.79 d |
sd (mm) | 0.9 | 0.8 | 1.3 | 1.1 | 1.4 |
Bulb Onion (kg ha−1) | 45,871 a | 37,791 ab | 28,255 bc | 24,110 c | 18,001 c |
sd (kg ha−1) | 9861 | 10,508 | 10,291 | 9009 | 5477 |
IWP (kg m−3) | 3.06 a | 2.84 a | 2.18 a | 2.93 a | 3.43 a |
sd (kg m−3) | 0.3 | 0.4 | 0.6 | 0.6 | 0.4 |
RCWP (kg m−3) | 47.72 a | 41.26 a | 39.63 a | 36.90 a | 29.32 a |
Sd (kg m−3) | 13.0 | 13.7 | 18.9 | 18.1 | 11.9 |
Wfblue (m−3 t−1) | 20.95 b | 24.23 ab | 25.23 ab | 27.09 ab | 34.10 a |
sdWfblue (m−3 t−1) | 3.2 | 5.0 | 7.8 | 7.6 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terán-Chaves, C.A.; Montejo-Nuñez, L.; Cordero-Cordero, C.; Polo-Murcia, S.M. Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia. Horticulturae 2023, 9, 632. https://doi.org/10.3390/horticulturae9060632
Terán-Chaves CA, Montejo-Nuñez L, Cordero-Cordero C, Polo-Murcia SM. Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia. Horticulturae. 2023; 9(6):632. https://doi.org/10.3390/horticulturae9060632
Chicago/Turabian StyleTerán-Chaves, César Augusto, Luis Montejo-Nuñez, Carina Cordero-Cordero, and Sonia Mercedes Polo-Murcia. 2023. "Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia" Horticulturae 9, no. 6: 632. https://doi.org/10.3390/horticulturae9060632
APA StyleTerán-Chaves, C. A., Montejo-Nuñez, L., Cordero-Cordero, C., & Polo-Murcia, S. M. (2023). Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia. Horticulturae, 9(6), 632. https://doi.org/10.3390/horticulturae9060632